Use more slice patterns inside the compiler
Nothing super noteworthy. Just replacing the common 'fragile' pattern of "length check followed by indexing or unwrap" with slice patterns for legibility and 'robustness'.
r? ghost
Fix `ElaborateBoxDerefs` on debug varinfo
Slightly simplifies the `ElaborateBoxDerefs` pass to fix cases where it was applying the wrong projections to debug var infos containing places that deref boxes.
From what I can tell[^1], we don't actually have any tests (or code anywhere, really) that exercise `debug x => *(...: Box<T>)`, and it's very difficult to trigger this in surface Rust, so I wrote a custom MIR test.
What happens is that the pass was turning `*(SOME_PLACE: Box<T>)` into `*(*((((SOME_PLACE).0: Unique<T>).0: NonNull<T>).0: *const T))` in debug var infos. In particular, notice the *double deref*, which was wrong.
This is the root cause of #128554, so this PR fixes#128554 as well. The reason that async closures was affected is because of the way that we compute the [`ByMove` body](https://github.com/rust-lang/rust/blob/master/compiler/rustc_mir_transform/src/coroutine/by_move_body.rs), which resulted in `*(...: Box<T>)` in debug var info. But this really has nothing to do with async closures.
[^1]: Validated by literally replacing the `if elem == PlaceElem::Deref && base_ty.is_box() { ... }` innards with a `panic!()`, which compiled all of stage2 without panicking.
Jump threading stores values as `u128` (`ScalarInt`) and does its
comparisons for equality as integer comparisons.
This works great for integers. Sadly, not everything is an integer.
Floats famously have wonky equality semantcs, with `NaN!=NaN` and
`0.0 == -0.0`. This does not match our beautiful integer bitpattern
equality and therefore causes things to go horribly wrong.
While jump threading could be extended to support floats by remembering
that they're floats in the value state and handling them properly,
it's signficantly easier to just disable it for now.
Let InstCombine remove Clone shims inside Clone shims
The Clone shims that we generate tend to recurse into other Clone shims, which gets very silly very quickly. Here's our current state: https://godbolt.org/z/E69YeY8eq
So I've added InstSimplify to the shims optimization passes, and improved `is_trivially_pure_clone_copy` so that it can delete those calls inside the shim. This makes the shim way smaller because most of its size is the required ceremony for unwinding.
This change also completely breaks the UI test added for https://github.com/rust-lang/rust/issues/104870. With this PR, that program ICEs in MIR type checking because `is_trivially_pure_clone_copy` and the trait solver disagree on whether `*mut u8` is `Copy`. And adding the requisite `Copy` impl to make them agree makes the test not generate any diagnostics. Considering that I spent most of my time on this PR fixing `#![no_core]` tests, I would prefer to just delete this one. The maintenance burden of `#![no_core]` is uniquely high because when they break they tend to break in very confusing ways.
try-job: x86_64-mingw
Make Clone::clone a lang item
I want to absorb all the logic for picking whether an Instance is LocalCopy or GloballyShared into one place. As part of this, I wanted to identify Clone shims inside `cross_crate_inlinable` and found that rather tricky. `@compiler-errors` suggested that I add a lang item for `Clone::clone` because that would produce other cleanups in the compiler.
That sounds good to me, but I have looked and I've only been able to find one.
r? compiler-errors
Clean up a few minor refs in `format!` macro, as it has a performance cost. Apparently the compiler is unable to inline `format!("{}", &variable)`, and does a run-time double-reference instead (format macro already does one level referencing). Inlining format args prevents accidental `&` misuse.
In the future, branch and MC/DC mappings might have expressions that don't
correspond to any single point in the control-flow graph. That makes it
trickier to keep track of which expressions should expect an `ExpressionUsed`
node.
We therefore sidestep that complexity by only performing `ExpressionUsed`
simplification for expressions associated directly with ordinary `Code`
mappings.
[Coverage][MCDC] Group mcdc tests and fix panic when generating mcdc code for inlined expressions.
### Changes
1. Group all mcdc tests to one directory.
2. Since mcdc instruments different mappings for boolean expressions with normal branch coverage as #125766 introduces, it would be better also trace branch coverage results in mcdc tests.
3. So far rustc does not call `CoverageInfoBuilderMethods::init_coverage` for inlined functions. As a result, it could panic if it tries to instrument mcdc statements for inlined functions due to uninitialized cond bitmaps. We can reproduce this issue by current nightly rustc and [the test](https://github.com/rust-lang/rust/pull/127234/files#diff-c81af6bf4869aa42f5c7334e3e86344475de362f673f54ce439ec75fcb5ac3e5) with flag `--release`. This patch fixes it.
Support tail calls in mir via `TerminatorKind::TailCall`
This is one of the interesting bits in tail call implementation — MIR support.
This adds a new `TerminatorKind` which represents a tail call:
```rust
TailCall {
func: Operand<'tcx>,
args: Vec<Operand<'tcx>>,
fn_span: Span,
},
```
*Structurally* this is very similar to a normal `Call` but is missing a few fields:
- `destination` — tail calls don't write to destination, instead they pass caller's destination to the callee (such that eventual `return` will write to the caller of the function that used tail call)
- `target` — similarly to `destination` tail calls pass the caller's return address to the callee, so there is nothing to do
- `unwind` — I _think_ this is applicable too, although it's a bit confusing
- `call_source` — `become` forbids operators and is not created as a lowering of something else; tail calls always come from HIR (at least for now)
It might be helpful to read the interpreter implementation to understand what `TailCall` means exactly, although I've tried documenting it too.
-----
There are a few `FIXME`-questions still left, ideally we'd be able to answer them during review ':)
-----
r? `@oli-obk`
cc `@scottmcm` `@DrMeepster` `@JakobDegen`