Use the same precedence for all macro-like exprs
No need to make these have a different precedence since they're all written like `whatever!(expr)`, and it makes it simpler when adding new macro-based built-in operators in the future.
Ever since #125915, some `ast::AnonConst`s turn into `hir::ConstArgKind::Path`s,
which don't have associated `DefId`s. To deal with the fact that we don't have
resolution information in `DefCollector`, we decided to implement a process
where if the anon const *appeared* to be trivial (i.e., `N` or `{ N }`), we
would avoid creating a def for it in `DefCollector`. If later, in AST lowering,
we realized it turned out to be a unit struct literal, or we were lowering it
to something that didn't use `hir::ConstArg`, we'd create its def there.
However, let's say we have a macro `m!()` that expands to a reference to a free
constant `FOO`. If we use `m!()` in the body of an anon const (e.g., `Foo<{ m!() }>`),
then in def collection, it appears to be a nontrivial anon const and we create
a def. But the macro expands to something that looks like a trivial const arg,
but is not, so in AST lowering we "fix" the mistake we assumed def collection
made and create a def for it. This causes a duplicate definition ICE.
The ideal long-term fix for this is a bit unclear. One option is to delay def
creation for all expression-like nodes until AST lowering (see #128844 for an
incomplete attempt at this). This would avoid issues like this one that are
caused by hacky workarounds. However, this approach has some downsides as well,
and the best approach is yet to be determined.
In the meantime, this PR fixes the bug by delaying def creation for anon consts
whose bodies are macro invocations until after we expand the macro and know
what is inside it. This is accomplished by adding information to create the
anon const's def to the data in `Resolver.invocation_parents`.
Properly report error on `const gen fn`
Fixes#130232
Also removes some (what I thought were unused) functions, and fixes a bug in clippy where we considered `gen fn` to be the same as `fn` because it was only built to consider asyncness.
Fix `clippy::useless_conversion`
Self-explanatory. Probably the last clippy change I'll actually put up since this is the only other one I've actually seen in the wild.
improve error message when `global_asm!` uses `asm!` options
specifically, what was
error: expected one of `)`, `att_syntax`, or `raw`, found `preserves_flags`
--> $DIR/bad-options.rs:45:25
|
LL | global_asm!("", options(preserves_flags));
| ^^^^^^^^^^^^^^^ expected one of `)`, `att_syntax`, or `raw`
is now
error: the `preserves_flags` option cannot be used with `global_asm!`
--> $DIR/bad-options.rs:45:25
|
LL | global_asm!("", options(preserves_flags));
| ^^^^^^^^^^^^^^^ the `preserves_flags` option is not meaningful for global-scoped inline assembly
mirroring the phrasing of the [reference](https://doc.rust-lang.org/reference/inline-assembly.html#options).
This is also a bit of a refactor for a future `naked_asm!` macro (for use in `#[naked]` functions). Currently this sort of error can come up when switching from inline to global asm, or when a user just isn't that experienced with assembly. With `naked_asm!` added to the mix hitting this error is more likely.
Rollup of 6 pull requests
Successful merges:
- #126908 (Use Cow<'static, str> for InlineAsmTemplatePiece::String)
- #127999 (Inject arm32 shims into Windows metadata generation)
- #128137 (CStr: derive PartialEq, Eq; add test for Ord)
- #128185 (Fix a span error when parsing a wrong param of function.)
- #128187 (Fix 1.80.0 version in RELEASES.md)
- #128189 (Turn an unreachable code path into an ICE)
r? `@ghost`
`@rustbot` modify labels: rollup
Added dots at the sentence ends of rustc AST doc
Just a tiny improvement for the AST documentation by bringing consistency to sentence ends. I intentionally didn't terminate every sentence, there are still some members not having them, but at least there's no mixing style on the type level.
Match ergonomics 2024: Implement TC's match ergonomics proposal
Under gate `ref_pat_eat_one_layer_2024_structural`. Enabling `ref_pat_eat_one_layer_2024` at the same time allows the union of what the individual gates allow. `@traviscross`
r? `@Nadrieril`
cc https://github.com/rust-lang/rust/issues/123076
`@rustbot` label A-edition-2024 A-patterns
Under gate `ref_pat_eat_one_layer_2024_structural`.
Enabling `ref_pat_eat_one_layer_2024` at the same time allows the union
of what the individual gates allow.
It currently goes one token too far.
Example: line 259 of `tests/ui/abi/compatibility.rs`:
```
test_abi_compatible!(fn_fn, fn(), fn(i32) -> i32);
```
This commit changes the span for the second element from `fn(),` to
`fn()`, i.e. removes the extraneous comma.
Fix duplicated attributes on nonterminal expressions
This PR fixes a long-standing bug (#86055) whereby expression attributes can be duplicated when expanded through declarative macros.
First, consider how items are parsed in declarative macros:
```
Items:
- parse_nonterminal
- parse_item(ForceCollect::Yes)
- parse_item_
- attrs = parse_outer_attributes
- parse_item_common(attrs)
- maybe_whole!
- collect_tokens_trailing_token
```
The important thing is that the parsing of outer attributes is outside token collection, so the item's tokens don't include the attributes. This is how it's supposed to be.
Now consider how expression are parsed in declarative macros:
```
Exprs:
- parse_nonterminal
- parse_expr_force_collect
- collect_tokens_no_attrs
- collect_tokens_trailing_token
- parse_expr
- parse_expr_res(None)
- parse_expr_assoc_with
- parse_expr_prefix
- parse_or_use_outer_attributes
- parse_expr_dot_or_call
```
The important thing is that the parsing of outer attributes is inside token collection, so the the expr's tokens do include the attributes, i.e. in `AttributesData::tokens`.
This PR fixes the bug by rearranging expression parsing to that outer attribute parsing happens outside of token collection. This requires a number of small refactorings because expression parsing is somewhat complicated. While doing so the PR makes the code a bit cleaner and simpler, by eliminating `parse_or_use_outer_attributes` and `Option<AttrWrapper>` arguments (in favour of the simpler `parse_outer_attributes` and `AttrWrapper` arguments), and simplifying `LhsExpr`.
r? `@petrochenkov`
delegation: Implement glob delegation
Support delegating to all trait methods in one go.
Overriding globs with explicit definitions is also supported.
The implementation is generally based on the design from https://github.com/rust-lang/rfcs/pull/3530#issuecomment-2020869823, but unlike with list delegation in https://github.com/rust-lang/rust/pull/123413 we cannot expand glob delegation eagerly.
We have to enqueue it into the queue of unexpanded macros (most other macros are processed this way too), and then a glob delegation waits in that queue until its trait path is resolved, and enough code expands to generate the identifier list produced from the glob.
Glob delegation is only allowed in impls, and can only point to traits.
Supporting it in other places gives very little practical benefit, but significantly raises the implementation complexity.
Part of https://github.com/rust-lang/rust/issues/118212.
Parse unsafe attributes
Initial parse implementation for #123757
This is the initial work to parse unsafe attributes, which is represented as an extra `unsafety` field in `MetaItem` and `AttrItem`. There's two areas in the code where it appears that parsing is done manually and not using the parser stuff, and I'm not sure how I'm supposed to thread the change there.
Rename HIR `TypeBinding` to `AssocItemConstraint` and related cleanup
Rename `hir::TypeBinding` and `ast::AssocConstraint` to `AssocItemConstraint` and update all items and locals using the old terminology.
Motivation: The terminology *type binding* is extremely outdated. "Type bindings" not only include constraints on associated *types* but also on associated *constants* (feature `associated_const_equality`) and on RPITITs of associated *functions* (feature `return_type_notation`). Hence the word *item* in the new name. Furthermore, the word *binding* commonly refers to a mapping from a binder/identifier to a "value" for some definition of "value". Its use in "type binding" made sense when equality constraints (e.g., `AssocTy = Ty`) were the only kind of associated item constraint. Nowadays however, we also have *associated type bounds* (e.g., `AssocTy: Bound`) for which the term *binding* doesn't make sense.
---
Old terminology (HIR, rustdoc):
```
`TypeBinding`: (associated) type binding
├── `Constraint`: associated type bound
└── `Equality`: (associated) equality constraint (?)
├── `Ty`: (associated) type binding
└── `Const`: associated const equality (constraint)
```
Old terminology (AST, abbrev.):
```
`AssocConstraint`
├── `Bound`
└── `Equality`
├── `Ty`
└── `Const`
```
New terminology (AST, HIR, rustdoc):
```
`AssocItemConstraint`: associated item constraint
├── `Bound`: associated type bound
└── `Equality`: associated item equality constraint OR associated item binding (for short)
├── `Ty`: associated type equality constraint OR associated type binding (for short)
└── `Const`: associated const equality constraint OR associated const binding (for short)
```
r? compiler-errors
Rename Unsafe to Safety
Alternative to #124455, which is to just have one Safety enum to use everywhere, this opens the posibility of adding `ast::Safety::Safe` that's useful for unsafe extern blocks.
This leaves us today with:
```rust
enum ast::Safety {
Unsafe(Span),
Default,
// Safe (going to be added for unsafe extern blocks)
}
enum hir::Safety {
Unsafe,
Safe,
}
```
We would convert from `ast::Safety::Default` into the right Safety level according the context.
Improve parser
Fixes#124935.
- Add a few more help diagnostics to incorrect semicolons
- Overall improved that function
- Addded a few comments
- Renamed diff_marker fns to git_diff_marker
The starting point for this was identical comments on two different
fields, in `ast::VariantData::Struct` and `hir::VariantData::Struct`:
```
// FIXME: investigate making this a `Option<ErrorGuaranteed>`
recovered: bool
```
I tried that, and then found that I needed to add an `ErrorGuaranteed`
to `Recovered::Yes`. Then I ended up using `Recovered` instead of
`Option<ErrorGuaranteed>` for these two places and elsewhere, which
required moving `ErrorGuaranteed` from `rustc_parse` to `rustc_ast`.
This makes things more consistent, because `Recovered` is used in more
places, and there are fewer uses of `bool` and
`Option<ErrorGuaranteed>`. And safer, because it's difficult/impossible
to set `recovered` to `Recovered::Yes` without having emitted an error.