This commit replaces this pattern:
```
err.into_diagnostic(dcx)
```
with this pattern:
```
dcx.create_err(err)
```
in a lot of places.
It's a little shorter, makes the error level explicit, avoids some
`IntoDiagnostic` imports, and is a necessary prerequisite for the next
commit which will add a `level` arg to `into_diagnostic`.
This requires adding `track_caller` on `create_err` to avoid mucking up
the output of `tests/ui/track-diagnostics/track4.rs`. It probably should
have been there already.
detects redundant imports that can be eliminated.
for #117772 :
In order to facilitate review and modification, split the checking code and
removing redundant imports code into two PR.
It's more of a `Parser`-level concern than a `TokenCursor`-level
concern. Also, `num_bump_calls` is a more accurate name, because it's
incremented in `Parser::bump`.
Instead of loading the Fluent resources for every crate in
`rustc_error_messages`, each crate generates typed identifiers for its
own diagnostics and creates a static which are pulled together in the
`rustc_driver` crate and provided to the diagnostic emitter.
Signed-off-by: David Wood <david.wood@huawei.com>
Instead of `ast::Lit`.
Literal lowering now happens at two different times. Expression literals
are lowered when HIR is crated. Attribute literals are lowered during
parsing.
This commit changes the language very slightly. Some programs that used
to not compile now will compile. This is because some invalid literals
that are removed by `cfg` or attribute macros will no longer trigger
errors. See this comment for more details:
https://github.com/rust-lang/rust/pull/102944#issuecomment-1277476773
`To` is better than `Create` for indicating that this is a non-consuming
conversion, rather than creating something out of nothing.
And the addition of `Attr` is because the current names makes them sound
like they relate to `TokenStream`, but really they relate to
`AttrTokenStream`.
These two type names are long and have long matching prefixes. I find
them hard to read, especially in combinations like
`AttrAnnotatedTokenStream::new(vec![AttrAnnotatedTokenTree::Token(..)])`.
This commit renames them as `AttrToken{Stream,Tree}`.
In some places we use `Vec<Attribute>` and some places we use
`ThinVec<Attribute>` (a.k.a. `AttrVec`). This results in various points
where we have to convert between `Vec` and `ThinVec`.
This commit changes the places that use `Vec<Attribute>` to use
`AttrVec`. A lot of this is mechanical and boring, but there are
some interesting parts:
- It adds a few new methods to `ThinVec`.
- It implements `MapInPlace` for `ThinVec`, and introduces a macro to
avoid the repetition of this trait for `Vec`, `SmallVec`, and
`ThinVec`.
Overall, it makes the code a little nicer, and has little effect on
performance. But it is a precursor to removing
`rustc_data_structures::thin_vec::ThinVec` and replacing it with
`thin_vec::ThinVec`, which is implemented more efficiently.
This PR modifies the macro expansion infrastructure to handle attributes
in a fully token-based manner. As a result:
* Derives macros no longer lose spans when their input is modified
by eager cfg-expansion. This is accomplished by performing eager
cfg-expansion on the token stream that we pass to the derive
proc-macro
* Inner attributes now preserve spans in all cases, including when we
have multiple inner attributes in a row.
This is accomplished through the following changes:
* New structs `AttrAnnotatedTokenStream` and `AttrAnnotatedTokenTree` are introduced.
These are very similar to a normal `TokenTree`, but they also track
the position of attributes and attribute targets within the stream.
They are built when we collect tokens during parsing.
An `AttrAnnotatedTokenStream` is converted to a regular `TokenStream` when
we invoke a macro.
* Token capturing and `LazyTokenStream` are modified to work with
`AttrAnnotatedTokenStream`. A new `ReplaceRange` type is introduced, which
is created during the parsing of a nested AST node to make the 'outer'
AST node aware of the attributes and attribute target stored deeper in the token stream.
* When we need to perform eager cfg-expansion (either due to `#[derive]` or `#[cfg_eval]`),
we tokenize and reparse our target, capturing additional information about the locations of
`#[cfg]` and `#[cfg_attr]` attributes at any depth within the target.
This is a performance optimization, allowing us to perform less work
in the typical case where captured tokens never have eager cfg-expansion run.
This is a pure refactoring split out from #80689.
It represents the most invasive part of that PR, requiring changes in
every caller of `parse_outer_attributes`
In order to eagerly expand `#[cfg]` attributes while preserving the
original `TokenStream`, we need to know the range of tokens that
corresponds to every attribute target. This is accomplished by making
`parse_outer_attributes` return an opaque `AttrWrapper` struct. An
`AttrWrapper` must be converted to a plain `AttrVec` by passing it to
`collect_tokens_trailing_token`. This makes it difficult to accidentally
construct an AST node with attributes without calling `collect_tokens_trailing_token`,
since AST nodes store an `AttrVec`, not an `AttrWrapper`.
As a result, we now call `collect_tokens_trailing_token` for attribute
targets which only support inert attributes, such as generic arguments
and struct fields. Currently, the constructed `LazyTokenStream` is
simply discarded. Future PRs will record the token range corresponding
to the attribute target, allowing those tokens to be removed from an
enclosing `collect_tokens_trailing_token` call if necessary.
A new `HasTokens` trait is introduced, which is used to move logic from
the callers of `collect_tokens` into the body of `collect_tokens`.
In addition to reducing duplication, this paves the way for PR #80689,
which needs to perform additional logic during token collection.