State transforms retains storage statements for locals that are not
stored inside a coroutine. It ensures those locals are live when
resuming by inserting StorageLive as appropriate. It forgot to end the
storage of those locals when suspending, which is fixed here.
While the end of live range is implicit when executing return, it is
nevertheless useful for inliner which would otherwise extend the live
range beyond return.
`.debug_pubnames` and `.debug_pubtypes` are poorly designed and people
seldom use them. However, they take a considerable portion of size in
the final binary. This tells LLVM stop emitting those sections on
DWARFv4 or lower. DWARFv5 use `.debug_names` which is more concise
in size and performant for name lookup.
Extract exhaustiveness into its own crate
It now makes sense to extract exhaustiveness into its own crate! This was much-requested by rust-analyzer (they currently maintain by hand a copy of the algorithm), and I hope this can serve other projects e.g. clippy.
This is the churny PR: it exclusively moves code around. It's not yet useable outside of rustc but I wanted the churny parts to be out of the way.
r? `@compiler-errors`
Do not parenthesize exterior struct lit inside match guards
Before this PR, the AST pretty-printer injects parentheses around expressions any time parens _could_ be needed depending on what else is in the code that surrounds that expression. But the pretty-printer did not pass around enough context to understand whether parentheses really _are_ needed on any particular expression. As a consequence, there are false positives where unneeded parentheses are being inserted.
Example:
```rust
#![feature(if_let_guard)]
macro_rules! pp {
($e:expr) => {
stringify!($e)
};
}
fn main() {
println!("{}", pp!(match () { () if let _ = Struct {} => {} }));
}
```
**Before:**
```console
match () { () if let _ = (Struct {}) => {} }
```
**After:**
```console
match () { () if let _ = Struct {} => {} }
```
This PR introduces a bit of state that is passed across various expression printing methods to help understand accurately whether particular situations require parentheses injected by the pretty printer, and it fixes one such false positive involving match guards as shown above.
There are other parenthesization false positive cases not fixed by this PR. I intend to address these in follow-up PRs. For example here is one: the expression `{ let _ = match x {} + 1; }` is pretty-printed as `{ let _ = (match x {}) + 1; }` despite there being no reason for parentheses to appear there.
resolve: Use `def_kind` query to cleanup some code
Follow up to https://github.com/rust-lang/rust/pull/118188.
Similar attempts to use queries in resolver resulted in perf regressions in the past, so this needs a perf run first.
Use a u64 for the rmeta root position
Waffle noticed this in https://github.com/rust-lang/rust/pull/117301#discussion_r1405410174
We've upgraded the other file offsets to u64, and this one only costs 4 bytes per file. Also the way the truncation was being done before was extremely easy to miss, I sure missed it! It's not clear to me if not having this change effectively made the other upgrades from u32 to u64 ineffective, but we can have it now.
r? `@WaffleLapkin`
Add lint against ambiguous wide pointer comparisons
This PR is the resolution of https://github.com/rust-lang/rust/issues/106447 decided in https://github.com/rust-lang/rust/issues/117717 by T-lang.
## `ambiguous_wide_pointer_comparisons`
*warn-by-default*
The `ambiguous_wide_pointer_comparisons` lint checks comparison of `*const/*mut ?Sized` as the operands.
### Example
```rust
let ab = (A, B);
let a = &ab.0 as *const dyn T;
let b = &ab.1 as *const dyn T;
let _ = a == b;
```
### Explanation
The comparison includes metadata which may not be expected.
-------
This PR also drops `clippy::vtable_address_comparisons` which is superseded by this one.
~~One thing: is the current naming right? `invalid` seems a bit too much.~~
Fixes https://github.com/rust-lang/rust/issues/117717
Remove edition umbrella features.
In the 2018 edition, there was an "umbrella" feature `#[feature(rust_2018_preview)]` which was used to enable several other features at once. This umbrella mechanism was not used in the 2021 edition and likely will not be used in 2024 either. During 2018 users reported that setting the feature was awkward, especially since they already needed to opt-in via the edition mechanism.
This PR removes this mechanism because I believe it will not be used (and will clean up and simplify the code). I believe that there are better ways to handle features and editions. In short:
- For highly experimental features, that may or may not be involved in an edition, they can implement regular feature gates like `tcx.features().my_feature`.
- For experimental features that *might* be involved in an edition, they should implement gates with `tcx.features().my_feature && span.at_least_rust_20xx()`. This requires the user to still specify `#![feature(my_feature)]`, to avoid disrupting testing of other edition features which are ready and have been accepted within the edition.
- For experimental features that have graduated to definitely be part of an edition, they should implement gates with `tcx.features().my_feature || span.at_least_rust_20xx()`, or just remove the feature check altogether and just check `span.at_least_rust_20xx()`.
- For relatively simple changes, they can skip the whole feature gating thing and just check `span.at_least_rust_20xx()`, and rely on the instability of the edition itself (which requires `-Zunstable-options`) to gate it.
I am working on documenting all of this in the rustc-dev-guide.
Implement repr(packed) for repr(simd)
This allows creating vectors with non-power-of-2 lengths that do not have padding. See rust-lang/portable-simd#319
Rearrange `default_configuration` and `CheckCfg::fill_well_known`.
There are comments saying these two functions should be kept in sync, but they have very different structures, process symbols in different orders, and there are some inconsistencies.
This commit reorders them so they're both mostly processing symbols in alphabetical order, which makes cross-checking them a lot easier. The commit also adds some macros to factor out repetitive code patterns.
The commit also moves the handling of `sym::test` out of `build_configuration` into `default_configuration`, where all the other symbols are handled.
r? `@bjorn3`
guarantee that char and u32 are ABI-compatible
In https://github.com/rust-lang/rust/pull/116894 we added a guarantee that `char` has the same alignment as `u32`, but there is still one axis where these types could differ: function call ABI. So let's nail that down as well: in a function signature, `char` and `u32` are completely equivalent.
This is a new stable guarantee, so it will need t-lang approval.
There are comments saying these two functions should be kept in sync,
but they have very different structures, process symbols in different
orders, and there are some inconsistencies.
This commit reorders them so they're both mostly processing symbols in
alphabetical order, which makes cross-checking them a lot easier. The
commit also adds some macros to factor out repetitive code patterns.
Plus it adds `sanitizer_cfi_normalize_{integers,pointers}` to
`fill_well_known`, which were missing.
The commit also moves the handling of `sym::test` out of
`build_configuration` into `default_configuration`, where all the other
symbols are handled.
This is an extension of the previous commit. It means the output of
something like this:
```
stringify!(let a: Vec<u32> = vec![];)
```
goes from this:
```
let a: Vec<u32> = vec![] ;
```
With this PR, it now produces this string:
```
let a: Vec<u32> = vec![];
```
`tokenstream::Spacing` appears on all `TokenTree::Token` instances,
both punct and non-punct. Its current usage:
- `Joint` means "can join with the next token *and* that token is a
punct".
- `Alone` means "cannot join with the next token *or* can join with the
next token but that token is not a punct".
The fact that `Alone` is used for two different cases is awkward.
This commit augments `tokenstream::Spacing` with a new variant
`JointHidden`, resulting in:
- `Joint` means "can join with the next token *and* that token is a
punct".
- `JointHidden` means "can join with the next token *and* that token is a
not a punct".
- `Alone` means "cannot join with the next token".
This *drastically* improves the output of `print_tts`. For example,
this:
```
stringify!(let a: Vec<u32> = vec![];)
```
currently produces this string:
```
let a : Vec < u32 > = vec! [] ;
```
With this PR, it now produces this string:
```
let a: Vec<u32> = vec![] ;
```
(The space after the `]` is because `TokenTree::Delimited` currently
doesn't have spacing information. The subsequent commit fixes this.)
The new `print_tts` doesn't replicate original code perfectly. E.g.
multiple space characters will be condensed into a single space
character. But it's much improved.
`print_tts` still produces the old, uglier output for code produced by
proc macros. Because we have to translate the generated code from
`proc_macro::Spacing` to the more expressive `token::Spacing`, which
results in too much `proc_macro::Along` usage and no
`proc_macro::JointHidden` usage. So `space_between` still exists and
is used by `print_tts` in conjunction with the `Spacing` field.
This change will also help with the removal of `Token::Interpolated`.
Currently interpolated tokens are pretty-printed nicely via AST pretty
printing. `Token::Interpolated` removal will mean they get printed with
`print_tts`. Without this change, that would result in much uglier
output for code produced by decl macro expansions. With this change, AST
pretty printing and `print_tts` produce similar results.
The commit also tweaks the comments on `proc_macro::Spacing`. In
particular, it refers to "compound tokens" rather than "multi-char
operators" because lifetimes aren't operators.
Implement `--env` compiler flag (without `tracked_env` support)
Part of https://github.com/rust-lang/rust/issues/80792.
Implementation of https://github.com/rust-lang/compiler-team/issues/653.
Not an implementation of https://github.com/rust-lang/rfcs/pull/2794.
It adds the `--env` compiler flag option which allows to set environment values used by `env!` and `option_env!`.
Important to note: When trying to retrieve an environment variable value, it will first look into the ones defined with `--env`, and if there isn't one, then only it will look into the environment variables. So if you use `--env PATH=a`, then `env!("PATH")` will return `"a"` and not the actual `PATH` value.
As mentioned in the title, `tracked_env` support is not added here. I'll do it in a follow-up PR.
r? rust-lang/compiler
remove redundant imports
detects redundant imports that can be eliminated.
for #117772 :
In order to facilitate review and modification, split the checking code and removing redundant imports code into two PR.
r? `@petrochenkov`
Don't print host effect param in pretty `path_generic_args`
Make `own_args_no_defaults` pass back the `GenericParamDef`, so that we can pass both the args *and* param definitions into `path_generic_args`. That allows us to use the `GenericParamDef` to filter out effect params.
This allows us to filter out the host param regardless of whether it's `sym::host` or `true`/`false`.
This also renames a couple of `const_effect_param` -> `host_effect_param`, and restores `~const` pretty printing to `TraitPredPrintModifiersAndPath`.
cc #118785
r? `@fee1-dead` cc `@oli-obk`
detects redundant imports that can be eliminated.
for #117772 :
In order to facilitate review and modification, split the checking code and
removing redundant imports code into two PR.
Don't warn an empty pattern unreachable if we're not sure the data is valid
Exhaustiveness checking used to be naive about the possibility of a place containing invalid data. This could cause it to emit an "unreachable pattern" lint on an arm that was in fact reachable, as in https://github.com/rust-lang/rust/issues/117119.
This PR fixes that. We now track whether a place that is matched on may hold invalid data. This also forced me to be extra precise about how exhaustiveness manages empty types.
Note that this now errs in the opposite direction: the following arm is truly unreachable (because the binding causes a read of the value) but not linted as such. I'd rather not recommend writing a `match ... {}` that has the implicit side-effect of loading the value. [Never patterns](https://github.com/rust-lang/rust/issues/118155) will solve this cleanly.
```rust
match union.value {
_x => unreachable!(),
}
```
I recommend reviewing commit by commit. I went all-in on the test suite because this went through a lot of iterations and I kept everything. The bit I'm least confident in is `is_known_valid_scrutinee` in `check_match.rs`.
Fixes https://github.com/rust-lang/rust/issues/117119.
Lower some forgotten spans
I wrote a HIR visitor that visited all of the spans in the HIR, and made it ICE when we have a unlowered span. That led me to discover these unlowered spans.
Strengthen well known check-cfg names and values test
https://github.com/rust-lang/rust/pull/118494 is changing the implementation of how we expect well known check-cfg names and values, but we currently don't have a test that checks every well known only some of them.
This PR therefore strengthen our well known names/values test to include all of the configs to at least avoid unintended regressions and validate new entry.
*this PR also contains some drive-by consolidation of unexpected `target_os`, `target_arch` into a single file*
r? `@nnethercote` (maybe? feel free to re-assign)
Add more SIMD platform-intrinsics
- [x] simd_masked_load
- [x] LLVM codegen - llvm.masked.load
- [x] cranelift codegen - implemented but untested
- [ ] simd_masked_store
- [x] LLVM codegen - llvm.masked.store
- [ ] cranelift codegen
Also added a run-pass test to test both intrinsics, and additional build-fail & check-fail to cover validation for both intrinsics
Make async generators fused by default
I actually changed my mind about this since the implementation PR landed. I think it's beneficial for `async gen` blocks to be "fused" by default -- i.e., for them to repeatedly return `Poll::Ready(None)` -- rather than panic.
We have [`FusedStream`](https://docs.rs/futures/latest/futures/stream/trait.FusedStream.html) in futures-rs to represent streams with this capability already anyways.
r? eholk
cc ```@rust-lang/wg-async,``` would like to know if anyone else has opinions about this.
coverage: Simplify the heuristic for ignoring `async fn` return spans
The code for extracting coverage spans from MIR has a special heuristic for dealing with `async fn`, so that the function's closing brace does not have a confusing double count.
The code implementing that heuristic is currently mixed in with the code for flushing remaining spans after the main refinement loop, making the refinement code harder to understand.
We can solve that by hoisting the heuristic to an earlier stage, after the spans have been extracted and sorted but before they have been processed by the refinement loop.
The coverage tests verify that the heuristic is still effective, so coverage mappings/reports for `async fn` have not changed.
---
This PR also has the side-effect of fixing the `None some_prev` panic that started appearing after #118525.
The old code assumed that `prev` would always be present after the refinement loop. That was only true if the list of collected spans was non-empty, but prior to #118525 that didn't seem to come up in practice. After that change, the list of collected spans could be empty in some specific circumstances, leading to panics.
The new code uses an `if let` to inspect `prev`, which correctly does nothing if there is no span present.
update target feature following LLVM API change
LLVM commit e817966718 renamed* the `unaligned-scalar-mem` target feature to `fast-unaligned-access`.
(*) technically the commit folded two previous features into one, but there are no references to the other one in rust.
coverage: Use `SpanMarker` to improve coverage spans for `if !` expressions
Coverage instrumentation works by extracting source code spans from MIR. However, some kinds of syntax are effectively erased during MIR building, so their spans don't necessarily exist anywhere in MIR, making them invisible to the coverage instrumentor (unless we resort to various heuristics and hacks to recover them).
This PR introduces `CoverageKind::SpanMarker`, which is a new variant of `StatementKind::Coverage`. Its sole purpose is to represent spans that would otherwise not appear in MIR, so that the coverage instrumentor can extract them.
When coverage is enabled, the MIR builder can insert these dummy statements as needed, to improve the accuracy of spans used by coverage mappings.
Fixes#115468.
---
```@rustbot``` label +A-code-coverage
Add new targets {x86_64,i686}-win7-windows-msvc
This PR adds two new Tier 3 targets, x86_64-win7-windows-msvc and i686-win7-windows-msvc, that aim to support targeting Windows 7 after the `*-pc-windows-msvc` target drops support for it (slated to happen in 1.76.0).
# Tier 3 target policy
> At this tier, the Rust project provides no official support for a target, so we place minimal requirements on the introduction of targets.
>
> A proposed new tier 3 target must be reviewed and approved by a member of the compiler team based on these requirements. The reviewer may choose to gauge broader compiler team consensus via a [Major Change Proposal (MCP)](https://forge.rust-lang.org/compiler/mcp.html).
>
> A proposed target or target-specific patch that substantially changes code shared with other targets (not just target-specific code) must be reviewed and approved by the appropriate team for that shared code before acceptance.
>
> - A tier 3 target must have a designated developer or developers (the "target maintainers") on record to be CCed when issues arise regarding the target. (The mechanism to track and CC such developers may evolve over time.)
This is me, `@roblabla` on github.
> - Targets must use naming consistent with any existing targets; for instance, a target for the same CPU or OS as an existing Rust target should use the same name for that CPU or OS. Targets should normally use the same names and naming conventions as used elsewhere in the broader ecosystem beyond Rust (such as in other toolchains), unless they have a very good reason to diverge. Changing the name of a target can be highly disruptive, especially once the target reaches a higher tier, so getting the name right is important even for a tier 3 target.
I went with naming the target `x86_64-win7-windows-msvc`, inserting the `win7` in the vendor field (usually set to to `pc`). This is done to avoid ecosystem churn, as quite a few crates have `cfg(target_os = "windows")` or `cfg(target_env = "msvc")`, but nearly no `cfg(target_vendor = "pc")`. Since my goal is to be able to seamlessly swap to the `win7` target, I figured it'd be easier this way.
> - Target names should not introduce undue confusion or ambiguity unless absolutely necessary to maintain ecosystem compatibility. For example, if the name of the target makes people extremely likely to form incorrect beliefs about what it targets, the name should be changed or augmented to disambiguate it.
I believe the naming is pretty explicit.
> - If possible, use only letters, numbers, dashes and underscores for the name. Periods (`.`) are known to cause issues in Cargo.
The name comforms to this requirement.
> - Tier 3 targets may have unusual requirements to build or use, but must not create legal issues or impose onerous legal terms for the Rust project or for Rust developers or users.
> - The target must not introduce license incompatibilities.
> - Anything added to the Rust repository must be under the standard Rust license (`MIT OR Apache-2.0`).
> - The target must not cause the Rust tools or libraries built for any other host (even when supporting cross-compilation to the target) to depend on any new dependency less permissive than the Rust licensing policy. This applies whether the dependency is a Rust crate that would require adding new license exceptions (as specified by the `tidy` tool in the rust-lang/rust repository), or whether the dependency is a native library or binary. In other words, the introduction of the target must not cause a user installing or running a version of Rust or the Rust tools to be subject to any new license requirements.
> - Compiling, linking, and emitting functional binaries, libraries, or other code for the target (whether hosted on the target itself or cross-compiling from another target) must not depend on proprietary (non-FOSS) libraries. Host tools built for the target itself may depend on the ordinary runtime libraries supplied by the platform and commonly used by other applications built for the target, but those libraries must not be required for code generation for the target; cross-compilation to the target must not require such libraries at all. For instance, `rustc` built for the target may depend on a common proprietary C runtime library or console output library, but must not depend on a proprietary code generation library or code optimization library. Rust's license permits such combinations, but the Rust project has no interest in maintaining such combinations within the scope of Rust itself, even at tier 3.
> - "onerous" here is an intentionally subjective term. At a minimum, "onerous" legal/licensing terms include but are *not* limited to: non-disclosure requirements, non-compete requirements, contributor license agreements (CLAs) or equivalent, "non-commercial"/"research-only"/etc terms, requirements conditional on the employer or employment of any particular Rust developers, revocable terms, any requirements that create liability for the Rust project or its developers or users, or any requirements that adversely affect the livelihood or prospects of the Rust project or its developers or users.
As far as I understand it, this target has exactly the same legal situation as the existing Tier 1 x86_64-pc-windows-msvc.
> - Neither this policy nor any decisions made regarding targets shall create any binding agreement or estoppel by any party. If any member of an approving Rust team serves as one of the maintainers of a target, or has any legal or employment requirement (explicit or implicit) that might affect their decisions regarding a target, they must recuse themselves from any approval decisions regarding the target's tier status, though they may otherwise participate in discussions.
> - This requirement does not prevent part or all of this policy from being cited in an explicit contract or work agreement (e.g. to implement or maintain support for a target). This requirement exists to ensure that a developer or team responsible for reviewing and approving a target does not face any legal threats or obligations that would prevent them from freely exercising their judgment in such approval, even if such judgment involves subjective matters or goes beyond the letter of these requirements.
Understood.
> - Tier 3 targets should attempt to implement as much of the standard libraries as possible and appropriate (core for most targets, alloc for targets that can support dynamic memory allocation, std for targets with an operating system or equivalent layer of system-provided functionality), but may leave some code unimplemented (either unavailable or stubbed out as appropriate), whether because the target makes it impossible to implement or challenging to implement. The authors of pull requests are not obligated to avoid calling any portions of the standard library on the basis of a tier 3 target not implementing those portions.
This target supports the whole libstd surface, since it's essentially reusing all of the x86_64-pc-windows-msvc target. Understood.
> - The target must provide documentation for the Rust community explaining how to build for the target, using cross-compilation if possible. If the target supports running binaries, or running tests (even if they do not pass), the documentation must explain how to run such binaries or tests for the target, using emulation if possible or dedicated hardware if necessary.
Wrote some documentation on how to build, test and cross-compile the target in the `platform-support` part. Hopefully it's enough to get started.
> - Tier 3 targets must not impose burden on the authors of pull requests, or other developers in the community, to maintain the target. In particular, do not post comments (automated or manual) on a PR that derail or suggest a block on the PR based on a tier 3 target. Do not send automated messages or notifications (via any medium, including via ``@`)` to a PR author or others involved with a PR regarding a tier 3 target, unless they have opted into such messages.
> - Backlinks such as those generated by the issue/PR tracker when linking to an issue or PR are not considered a violation of this policy, within reason. However, such messages (even on a separate repository) must not generate notifications to anyone involved with a PR who has not requested such notifications.
Understood.
> - Patches adding or updating tier 3 targets must not break any existing tier 2 or tier 1 target, and must not knowingly break another tier 3 target without approval of either the compiler team or the maintainers of the other tier 3 target.
> - In particular, this may come up when working on closely related targets, such as variations of the same architecture with different features. Avoid introducing unconditional uses of features that another variation of the target may not have; use conditional compilation or runtime detection, as appropriate, to let each target run code supported by that target.
Understood.
> If a tier 3 target stops meeting these requirements, or the target maintainers no longer have interest or time, or the target shows no signs of activity and has not built for some time, or removing the target would improve the quality of the Rust codebase, we may post a PR to remove it; any such PR will be CCed to the target maintainers (and potentially other people who have previously worked on the target), to check potential interest in improving the situation.
Understood.
Add emulated TLS support
This is a reopen of https://github.com/rust-lang/rust/pull/96317 . many android devices still only use 128 pthread keys, so using emutls can be helpful.
Currently LLVM uses emutls by default for some targets (such as android, openbsd), but rust does not use it, because `has_thread_local` is false.
This commit has some changes to allow users to enable emutls:
1. add `-Zhas-thread-local` flag to specify that std uses `#[thread_local]` instead of pthread key.
2. when using emutls, decorate symbol names to find thread local symbol correctly.
3. change `-Zforce-emulated-tls` to `-Ztls-model=emulated` to explicitly specify whether to generate emutls.
r? `@Amanieu`
Rollup of 6 pull requests
Successful merges:
- #117586 (Uplift the (new solver) canonicalizer into `rustc_next_trait_solver`)
- #118502 (fix: correct the arg for 'suggest to use associated function syntax' diagnostic)
- #118694 (Add instance evaluation and methods to read an allocation in StableMIR)
- #118715 (privacy: visit trait def id of projections)
- #118730 (recurse into refs when comparing tys for diagnostics)
- #118736 (temporarily revert "ice on ambguity in mir typeck")
r? `@ghost`
`@rustbot` modify labels: rollup
This is for post-monomorphization cycles. These are only caught later
(in drop elaboration for the example that I saw), so we need to handle
them here.
This issue wasn't noticed before because exhaustiveness only checked
inhabitedness when `exhaustive_patterns` was on. The preceding commit
now check inhabitedness always, which revealed the problem.
- `ConstructorSet` knows about both empty and nonempty constructors;
- If an empty constructor is present in the column, we output it in
`split().present`.
tidy error: /git/rust/compiler/rustc_ast_pretty/src/pprust/state.rs:1165: unexplained "```ignore" doctest; try one:
* make the test actually pass, by adding necessary imports and declarations, or
* use "```text", if the code is not Rust code, or
* use "```compile_fail,Ennnn", if the code is expected to fail at compile time, or
* use "```should_panic", if the code is expected to fail at run time, or
* use "```no_run", if the code should type-check but not necessary linkable/runnable, or
* explain it like "```ignore (cannot-test-this-because-xxxx)", if the annotation cannot be avoided.
tidy error: /git/rust/compiler/rustc_ast_pretty/src/pprust/state.rs:1176: unexplained "```ignore" doctest; try one:
* make the test actually pass, by adding necessary imports and declarations, or
* use "```text", if the code is not Rust code, or
* use "```compile_fail,Ennnn", if the code is expected to fail at compile time, or
* use "```should_panic", if the code is expected to fail at run time, or
* use "```no_run", if the code should type-check but not necessary linkable/runnable, or
* explain it like "```ignore (cannot-test-this-because-xxxx)", if the annotation cannot be avoided.
In all four of Break, Closure, Ret, Yeet, the needs_par_as_let_scrutinee
is guaranteed to return true because the .precedence().order() of those
expr kinds is <= AssocOp::LAnd.precedence().
The relevant functions in rustc_ast::util::parser are:
fn needs_par_as_let_scrutinee(order: i8) -> bool {
order <= prec_let_scrutinee_needs_par() as i8
}
fn prec_let_scrutinee_needs_par() -> usize {
AssocOp::LAnd.precedence()
}
The .precedence().order() of Closure is PREC_CLOSURE (-40) and of Break,
Ret, Yeet is PREC_JUMP (-30).
The value of AssocOp::LAnd.precedence() is 6.
So this commit causes no change in behavior, only potentially
performance by doing a redundant call to contains_exterior_struct_lit in
those four cases. This is fine because Break, Closure, Ret, Yeet should
be exceedingly rare in the position of a let scrutinee.
- Add `use Mode::*` to avoid all the qualifiers.
- Reorder the variants. The existing order makes no particular sense,
which has bugged me for some time. I've chosen an order that makes
sense to me.
These don't really make sense since C string literals were added. This
commit removes them in favour for `mode: Mode` args. `ascii_check` still
has a `characters_should_be_ascii: bool` arg.
Also, `characters_should_be_ascii` is renamed to be shorter.
temporarily revert "ice on ambguity in mir typeck"
Reverts #116530 as a temporary measure to fix#117577. That issue should be ultimately fixed by checking WF of type annotations prior to normalization, which is implemented in #104098 but this PR is intended to be backported to beta.
r? ``@compiler-errors`` (the reviewer of the reverted PR)
recurse into refs when comparing tys for diagnostics
before:

after:

this diff from the test suite is also quite nice imo:
```diff
`@@` -4,8 +4,8 `@@` error[E0308]: mismatched types
LL | debug_assert_eq!(iter.next(), Some(value));
| ^^^^^^^^^^^ expected `Option<<I as Iterator>::Item>`, found `Option<&<I as Iterator>::Item>`
|
- = note: expected enum `Option<<I as Iterator>::Item>`
- found enum `Option<&<I as Iterator>::Item>`
+ = note: expected enum `Option<_>`
+ found enum `Option<&_>`
```
privacy: visit trait def id of projections
Fixes#117997.
A refactoring in #117076 changed the `DefIdVisitorSkeleton` to avoid calling `visit_projection_ty` for `ty::Projection` aliases, and instead just iterate over the args - this makes sense, as `visit_projection_ty` will indirectly visit all of the same args, but in doing so, will also create a `TraitRef` containing the trait's `DefId`, which also gets visited. The trait's `DefId` isn't visited when we only visit the arguments without separating them into `TraitRef` and own args first.
Eventually this influences the reachability set and whether a function is encoded into the metadata.
Add instance evaluation and methods to read an allocation in StableMIR
The instance evaluation is needed to handle intrinsics such as `type_id` and `type_name`.
Since we now use Allocation to represent all evaluated constants, provide a few methods to help process the data inside an allocation.
I've also started to add a structured way to get information about the compilation target machine. For now, I've only added information needed to process an allocation.
r? ``````@ouz-a``````
Uplift the (new solver) canonicalizer into `rustc_next_trait_solver`
Uplifts the new trait solver's canonicalizer into a new crate called `rustc_next_trait_solver`.
The crate name is literally a bikeshed-avoidance name, so let's not block this PR on that -- renames are welcome later.
There are a host of other changes that were required to make this possible:
* Expose a `ConstTy` trait to get the `Interner::Ty` from a `Interner::Const`.
* Expose some constructor methods to construct `Bound` variants. These are currently methods defined on the interner themselves, but they could be pulled into traits later.
* Expose a `IntoKind` trait to turn a `Ty`/`Const`/`Region` into their corresponding `*Kind`s.
* Some minor tweaks to other APIs in `rustc_type_ir`.
The canonicalizer code itself is best reviewed **with whitespace ignored.**
r? ``@lcnr``
Explicitly implement `DynSync` and `DynSend` for `TyCtxt`
This is an attempt to short circuit trait resolution. It should get a perf run for bootstrap impact.
according to a poll of gay people in my phone, purple is the most popular color to use for highlighting
| color | percentage |
| ---------- | ---------- |
| bold white | 6% |
| blue | 14% |
| cyan | 26% |
| purple | 37% |
| magenta | 17% |
unfortunately, purple is not supported by 16-color terminals, which rustc apparently wants to support for some reason.
until we require support for full 256-color terms (e.g. by doing the same feature detection as we currently do for urls), we can't use it.
instead, i have collapsed the purple votes into magenta on the theory that they're close, and also because magenta is pretty.
Introduce support for `async gen` blocks
I'm delighted to demonstrate that `async gen` block are not very difficult to support. They're simply coroutines that yield `Poll<Option<T>>` and return `()`.
**This PR is WIP and in draft mode for now** -- I'm mostly putting it up to show folks that it's possible. This PR needs a lang-team experiment associated with it or possible an RFC, since I don't think it falls under the jurisdiction of the `gen` RFC that was recently authored by oli (https://github.com/rust-lang/rfcs/pull/3513, https://github.com/rust-lang/rust/issues/117078).
### Technical note on the pre-generator-transform yield type:
The reason that the underlying coroutines yield `Poll<Option<T>>` and not `Poll<T>` (which would make more sense, IMO, for the pre-transformed coroutine), is because the `TransformVisitor` that is used to turn coroutines into built-in state machine functions would have to destructure and reconstruct the latter into the former, which requires at least inserting a new basic block (for a `switchInt` terminator, to match on the `Poll` discriminant).
This does mean that the desugaring (at the `rustc_ast_lowering` level) of `async gen` blocks is a bit more involved. However, since we already need to intercept both `.await` and `yield` operators, I don't consider it much of a technical burden.
r? `@ghost`
never_patterns: Parse match arms with no body
Never patterns are meant to signal unreachable cases, and thus don't take bodies:
```rust
let ptr: *const Option<!> = ...;
match *ptr {
None => { foo(); }
Some(!),
}
```
This PR makes rustc accept the above, and enforces that an arm has a body xor is a never pattern. This affects parsing of match arms even with the feature off, so this is delicate. (Plus this is my first non-trivial change to the parser).
~~The last commit is optional; it introduces a bit of churn to allow the new suggestions to be machine-applicable. There may be a better solution? I'm not sure.~~ EDIT: I removed that commit
r? `@compiler-errors`
A refactoring in #117076 changed the `DefIdVisitorSkeleton` to avoid
calling `visit_projection_ty` for `ty::Projection` aliases, and instead
just iterate over the args - this makes sense, as `visit_projection_ty`
will indirectly visit all of the same args, but in doing so, will also
create a `TraitRef` containing the trait's `DefId`, which also gets
visited. The trait's `DefId` isn't visited when we only visit the
arguments without separating them into `TraitRef` and own args first.
Signed-off-by: David Wood <david@davidtw.co>
When MIR is built for an if-not expression, the `!` part of the condition
doesn't correspond to any MIR statement, so coverage instrumentation normally
can't see it.
We can fix that by deliberately injecting a dummy statement whose sole purpose
is to associate that span with its enclosing block.
There are cases where coverage instrumentation wants to show a span for some
syntax element, but there is no MIR node that naturally carries that span, so
the instrumentor can't see it.
MIR building can now use this new kind of coverage statement to deliberately
include those spans in MIR, attached to a dummy statement that has no other
effect.
Resolve associated item bindings by namespace
This is the 3rd commit split off from #118360 with tests reblessed (they no longer contain duplicated diags which were caused by 4c0addc80a) & slightly adapted (removed supertraits from a UI test, cc #118040).
> * Resolve all assoc item bindings (type, const, fn (feature `return_type_notation`)) by namespace instead of trying to resolve a type first (in the non-RTN case) and falling back to consts afterwards. This is consistent with RTN. E.g., for `Tr<K = {…}>` we now always try to look up assoc consts (this extends to supertrait bounds). This gets rid of assoc tys shadowing assoc consts in assoc item bindings which is undesirable & inconsistent (types and consts live in different namespaces after all)
> * Consolidate the resolution of assoc {ty, const} bindings and RTN (dedup, better diags for RTN)
> * Fix assoc consts being labeled as assoc *types* in several diagnostics
> * Make a bunch of diagnostics translatable
Fixes#112560 (error → pass).
As discussed
r? `@compiler-errors`
---
**Addendum**: What I call “associated item bindings” are commonly referred to as “type bindings” for historical reasons. Nowadays, “type bindings” include assoc type bindings, assoc const bindings and RTN (return type notation) which is why I prefer not to use this outdated term.
coverage: Merge refined spans in a separate final pass
Pulling this merge step out of `push_refined_span` and into a separate pass lets us push directly to `refined_spans` instead of calling a helper method.
Because the compiler can now see partial borrows of `refined_spans`, we can remove some extra code that was jumping through hoops to satisfy the borrow checker.
---
``@rustbot`` label +A-code-coverage
Tell MirUsedCollector that the pointer alignment checks calls its panic symbol
Fixes https://github.com/rust-lang/rust/pull/118683 (not an issue, but that PR is a basically a bug report)
When we had `panic_immediate_abort` start adding `#[inline]` to this panic function, builds started breaking because we failed to write up the MIR assert terminator to the correct panic shim. Things happened to work before by pure luck because without this feature enabled, the function we're inserting calls to is `#[inline(never)]` so we always generated code for it.
r? bjorn3
coverage: Avoid unnecessary macros in unit tests
These macros don't provide enough value to justify their complexity, when they can just as easily be functions instead.
---
`@rustbot` label +A-code-coverage
The instance evaluation is needed to handle intrinsics such as
`type_id` and `type_name`.
Since we now use Allocation to represent all evaluated constants,
provide a few methods to help process the data inside an allocation.
`GenKillAnalysis` has five methods that take a transfer function arg:
- `statement_effect`
- `before_statement_effect`
- `terminator_effect`
- `before_terminator_effect`
- `call_return_effect`
All the transfer function args have type `&mut impl GenKill<Self::Idx>`,
except for `terminator_effect`, which takes the simpler `Self::Domain`.
But only the first two need to be `impl GenKill`. The other
three can all be `Self::Domain`, just like `Analysis`. So this commit
changes the last two to take `Self::Domain`, making `GenKillAnalysis`
and `Analysis` more similar.
(Another idea would be to make all these methods `impl GenKill`. But
that doesn't work: `MaybeInitializedPlaces::terminator_effect` requires
the arg be `Self::Domain` so that `self_is_unwind_dead(place, state)`
can be called on it.)
This results in two non-generic types being used: `BorrowckResults` and
`BorrowckFlowState`. It's a net reduction in lines of code, and a little
easier to read.
Rollup of 6 pull requests
Successful merges:
- #116420 (discard invalid spans in external blocks)
- #118686 (Only check principal trait ref for object safety)
- #118688 (Add method to get type of an Rvalue in StableMIR)
- #118707 (Ping GuillaumeGomez for changes in rustc_codegen_gcc)
- #118712 (targets: remove not-added {i386,i486}-unknown-linux-gnu)
- #118719 (CFI: Add char to CFI integer normalization)
Failed merges:
- #117586 (Uplift the (new solver) canonicalizer into `rustc_next_trait_solver`)
r? `@ghost`
`@rustbot` modify labels: rollup
It is used just once. With it removed, the relevant code is a little
boilerplate-y but much easier to read, and is the same length. Overall I
think it's an improvement.
targets: remove not-added {i386,i486}-unknown-linux-gnu
These files were added to the repository but never wired up so they could be used - and that was a few years ago without anyone noticing - so let's remove these, they can be re-added if someone wants them.
cc #80662
r? ```@pnkfelix``` (familiar with the tier policy and Wesley is on vacation)
Add method to get type of an Rvalue in StableMIR
Provide a method to StableMIR users to retrieve the type of an Rvalue operation. There were two possible implementation:
1. Create the logic inside stable_mir to process the type according to the Rvalue semantics, which duplicates the logic of `rustc_middle::mir::Rvalue::ty()`.
2. Implement the Rvalue translation from StableMIR back to internal representation, invoke the `rustc_middle::mir::Rvalue::ty()`, and translate the return value to StableMIR.
I chose the first one for now since the duplication was fairly small, and the option 2 would require way more work to translate everything back to rustc internal representation. If we eventually add those translations, we could easily swap to the option 2.
```@compiler-errors``` / ```@ouz-a``` Please let me know if you have any strong opinion here.
r? ```@compiler-errors```
Only check principal trait ref for object safety
It should make things a bit faster, in case we end up registering a bunch of object safety preds.
r? ```@ghost```
discard invalid spans in external blocks
Fixes#116203
This PR has discarded the invalid `const_span`, thereby making the format more neat.
r? ``@Nilstrieb``
Avoid adding builtin functions to `symbols.o`
We found performance regressions in #113923. The problem seems to be that `--gc-sections` does not remove these symbols. I tested that lld removes these symbols, but ld and gold do not.
I found that `used` adds symbols to `symbols.o` at 3e202ead60/compiler/rustc_codegen_ssa/src/back/linker.rs (L1786-L1791).
The PR removes builtin functions.
Note that under LTO, ld still preserves these symbols. (lld will still remove them.)
The first commit also fixes#118559. But I think the second commit also makes sense.
compile-time evaluation: detect writes through immutable pointers
This has two motivations:
- it unblocks https://github.com/rust-lang/rust/pull/116745 (and therefore takes a big step towards `const_mut_refs` stabilization), because we can now detect if the memory that we find in `const` can be interned as "immutable"
- it would detect the UB that was uncovered in https://github.com/rust-lang/rust/pull/117905, which was caused by accidental stabilization of `copy` functions in `const` that can only be called with UB
When UB is detected, we emit a future-compat warn-by-default lint. This is not a breaking change, so completely in line with [the const-UB RFC](https://rust-lang.github.io/rfcs/3016-const-ub.html), meaning we don't need t-lang FCP here. I made the lint immediately show up for dependencies since it is nearly impossible to even trigger this lint without `const_mut_refs` -- the accidentally stabilized `copy` functions are the only way this can happen, so the crates that popped up in #117905 are the only causes of such UB (in the code that crater covers), and the three cases of UB that we know about have all been fixed in their respective crates already.
The way this is implemented is by making use of the fact that our interpreter is already generic over the notion of provenance. For CTFE we now use the new `CtfeProvenance` type which is conceptually an `AllocId` plus a boolean `immutable` flag (but packed for a more efficient representation). This means we can mark a pointer as immutable when it is created as a shared reference. The flag will be propagated to all pointers derived from this one. We can then check the immutable flag on each write to reject writes through immutable pointers.
I just hope perf works out.
Fix `rustc_codegen_gcc` build and tests failure in CI
https://github.com/rust-lang/rust/pull/118463 seems to have broke the PR CI, more specificaly the `x86_64-gnu-llvm-16` builder which [fail with](https://github.com/rust-lang/rust/actions/runs/7128709674/job/19411205695?pr=118705#step:26:1668):
```
Building stage1 codegen backend gcc (x86_64-unknown-linux-gnu)
Compiling libc v0.2.147
Compiling rustix v0.38.8
Compiling memchr v2.5.0
Compiling bitflags v2.4.0
Compiling linux-raw-sys v0.4.5
Compiling fastrand v2.0.0
Compiling smallvec v1.10.0
error: invalid `--check-cfg` argument: `values(freebsd10)` (expected `cfg(name, values("value1", "value2", ... "valueN"))`)
error: could not compile `libc` (lib) due to previous error
```
Updating to `libc` version 0.2.150 fixes the build issue since it includes the support for the new check-cfg syntax.
Then it [failed](https://github.com/rust-lang/rust/actions/runs/7129280743/job/19413025132?pr=118706#step:26:2218) with a missing `#![allow(internal_features)]` in one of the example.
r? `@GuillaumeGomez`
These files were added to the repository but never wired up so they could
be used - and that was a few years ago without anyone noticing - so let's
remove these, they can be re-added if someone wants them.
Signed-off-by: David Wood <david@davidtw.co>
`EvaluatedToUnknown` -> `EvaluatedToAmbigStackDependent`, `EvaluatedToRecur` -> `EvaluatedToErrStackDependent`
Less confusing names, since the only difference between them and their parallel `EvalutedTo..` is that they are stack dependent.
r? lcnr
Remove `PolyGenSig` since it's always a dummy binder
Coroutines are never polymorphic in their signature. This cleans up a FIXME in the code:
```
/// Returns the "coroutine signature", which consists of its yield
/// and return types.
///
/// N.B., some bits of the code prefers to see this wrapped in a
/// binder, but it never contains bound regions. Probably this
/// function should be removed.
```
Fix is_foreign_item for StableMIR instance
Change the implementation of `Instance::is_foreign_item` to directly query the compiler for the instance `def_id` instead of incorrectly relying on the conversion to `CrateItem`. I also added a method to check if the instance has body, since the function already existed and it just wasn't exposed via public APIs. This makes it much cheaper for the user to check if the instance has body.
## Background:
- In pull https://github.com/rust-lang/rust/pull/118524, I fixed the conversion from Instance to CrateItem to avoid the conversion if the instance didn't have a body available. This broke the `is_foreign_item`.
r? `@ouz-a`
rustc_arena: add `alloc_str`
Two places called `from_utf8_unchecked` for strings from `alloc_slice`,
and one's SAFETY comment said this was for lack of `alloc_str` -- so
let's just add that instead!
Enforce `must_use` on associated types and RPITITs that have a must-use trait in bounds
Warn when an RPITIT or (un-normalized) associated type with a `#[must_use]` trait in its bounds is unused.
This is pending T-lang approval, since it changes the semantics of the `#[must_use]` attribute slightly, but I think it strictly catches more strange errors.
I could also limit this to just RPITITs, but that seems less useful.
Fixes#118444
tip for define macro name after `macro_rules!`
Fixes#118295
~Note that there are some bad case such as `macro_rules![]` or `macro_rules!()`. However, I think these are acceptable as they are likely to be seldom used (feel free to close this if you think its shortcomings outweigh its benefits)~
Edit: this problem was resolved by utilizing the `source_map.span_to_next_source`.
r? `@petrochenkov`
Suppress warnings in LLVM wrapper when targeting MSVC
The LLVM header files generate many warnings when compiled using MSVC. This makes it difficult to work on the LLVM wrapper code, because the warnings and errors that are relevant to local edits are obscured by the hundreds of lines of warnings from the LLVM Headers.
Use the glob binding in resolve_rustdoc_path process
Fixes#117920
Returning `None` seems enough.
I reproduces and tests this locally by `cargo +stage1 build`, but I cannot reproduce this ICE by putting [the following code](https://play.rust-lang.org/?version=nightly&mode=debug&edition=2021&gist=8b3ca8f4a7676eb90baf30437ba041a2) into `tests/ui/...` and then compiling it using `rustc +stage1 /path/to/test.rs` or `x.py test`:
```rust
#![crate_type = "lib"]
use super::Hasher;
/// [`Hasher`]
pub use core:#️⃣:*;
```
r? `@petrochenkov`
Change the implementation of `Instance::is_foreign_item` to directly
query the compiler for the instance `def_id` instead of incorrectly
relying on the conversion to `CrateItem`.
Background:
- In pull https://github.com/rust-lang/rust/pull/118524, I fixed the
conversion from Instance to CrateItem to avoid the conversion if the
instance didn't have a body available. This broke the `is_foreign_item`.
Add ADT variant infomation to StableMIR and finish implementing TyKind::internal()
Introduce a `VariantDef` type and a mechanism to retrieve the definition from an `AdtDef`.
The `VariantDef` representation itself is just a combination of `AdtDef` and `VariantIdx`, which allow us to retrieve further information of a variant. I don't think we need to cache extra information for now, and we can translate on an on demand manner. I am leaving the fields public today due to https://github.com/rust-lang/project-stable-mir/issues/56, but they shouldn't. For this PR, I've only added a method to retrieve the variant name, and its fields. I also added an implementation of `RustcInternal` that allow users to retrieve more information using Rust internal APIs.
I have also finished the implementation of `RustcInternal` for `TyKind` which fixes https://github.com/rust-lang/project-stable-mir/issues/46.
## Motivation
Both of these changes are needed in order to properly interpret things like projections. For example,
- The variant definition is used to find out which variant we are downcasting to.
- Being able to create `Ty` from `TyKind` helps for example processing each stage of a projection, like the code in `place.ty()`.
`riscv32` platform support
This PR adds the following RISCV targets to the tier 2 list of targets:
- riscv32imafc-unknown-none-elf
- riscv32im-unknown-none-elf
The rationale behind adding them directly to tier 2, is that the other bare metal targets already exist at tier 2, and these new targets are the same with an additional target feature enabled.
As well as the additional targets, this PR fills out the platform support document(s) that were previously missing.
~~The RISC-V bare metal targets don't currently have a platform support document, but this will change soon as the RISC-V team from the Rust-embedded working group will maintain these once https://github.com/davidtwco/rust/pull/1 is merged (and `@davidtwco's` upstream PR is merged after). For the time being you can cc myself or any other member of the RISC-V team: https://github.com/orgs/rust-embedded/teams/riscv.~~
> A tier 2 target must have value to people other than its maintainers. (It may still be a niche target, but it must not be exclusively useful for an inherently closed group.)
RISC-V is an open specification, used and accessible to anyone including individuals.
> A tier 2 target must have a designated team of developers (the "target maintainers") available to consult on target-specific build-breaking issues, or if necessary to develop target-specific language or library implementation details. This team must have at least 2 developers.
This rust-embedded working group's [RISCV team](https://github.com/orgs/rust-embedded/teams/riscv) will maintain these targets.
> The target must not place undue burden on Rust developers not specifically concerned with that target. Rust developers are expected to not gratuitously break a tier 2 target, but are not expected to become experts in every tier 2 target, and are not expected to provide target-specific implementations for every tier 2 target.
I don't forsee this being an issue, the RISCV team will ensure we avoid undue burden for the general Rust community.
> The target must provide documentation for the Rust community explaining how to build for the target using cross-compilation, and explaining how to run tests for the target. If at all possible, this documentation should show how to run Rust programs and tests for the target using emulation, to allow anyone to do so. If the target cannot be feasibly emulated, the documentation should explain how to obtain and work with physical hardware, cloud systems, or equivalent.
There are links to resources we maintain in the re wg org in the platform support document.
> The target must document its baseline expectations for the features or versions of CPUs, operating systems, libraries, runtime environments, and similar.
Documented in the platform support document.
> If introducing a new tier 2 or higher target that is identical to an existing Rust target except for the baseline expectations for the features or versions of CPUs, operating systems, libraries, runtime environments, and similar, then the proposed target must document to the satisfaction of the approving teams why the specific difference in baseline expectations provides sufficient value to justify a separate target.
New target features in RISCV can drastically change the capability of a CPU, hence the need for a separate target to support different variants. We aim to support any ratified RISCV extensions.
> Tier 2 targets must not leave any significant portions of core or the standard library unimplemented or stubbed out, unless they cannot possibly be supported on the target.
`core` is fully implemented.
> The code generation backend for the target should not have deficiencies that invalidate Rust safety properties, as evaluated by the Rust compiler team. (This requirement does not apply to arbitrary security enhancements or mitigations provided by code generation backends, only to those properties needed to ensure safe Rust code cannot cause undefined behavior or other unsoundness.) If this requirement does not hold, the target must clearly and prominently document any such limitations as part of the target's entry in the target tier list, and ideally also via a failing test in the testsuite. The Rust compiler team must be satisfied with the balance between these limitations and the difficulty of implementing the necessary features.
RISCV is a well-established and well-maintained LLVM backend. To the best of my knowledge, the backend won't cause the generated code to have undefined behaviour.
> If the target supports C code, and the target has an interoperable calling convention for C code, the Rust target must support that C calling convention for the platform via extern "C". The C calling convention does not need to be the default Rust calling convention for the target, however.
The C calling convention is supported by RISCV.
> The target must build reliably in CI, for all components that Rust's CI considers mandatory.
For the last 4-5 years many of these RISCV targets have been building in CI without any known issues.
> The approving teams may additionally require that a subset of tests pass in CI, such as enough to build a functional "hello world" program, ./x.py test --no-run, or equivalent "smoke tests". In particular, this requirement may apply if the target builds host tools, or if the tests in question provide substantial value via early detection of critical problems.
Not applicable, in the future we may wish to add qemu tests but this is out of scope for now.
> Building the target in CI must not take substantially longer than the current slowest target in CI, and should not substantially raise the maintenance burden of the CI infrastructure. This requirement is subjective, to be evaluated by the infrastructure team, and will take the community importance of the target into account.
To the best of my knowledge, this will not induce a burden on the current CI infra.
> Tier 2 targets should, if at all possible, support cross-compiling. Tier 2 targets should not require using the target as the host for builds, even if the target supports host tools.
Cross-compilation is supported and documented in the platform support document.
> In addition to the legal requirements for all targets (specified in the tier 3 requirements), because a tier 2 target typically involves the Rust project building and supplying various compiled binaries, incorporating the target and redistributing any resulting compiled binaries (e.g. built libraries, host tools if any) must not impose any onerous license requirements on any members of the Rust project, including infrastructure team members and those operating CI systems. This is a subjective requirement, to be evaluated by the approving teams.
There are no additional license issues to worry about.
> Tier 2 targets must not impose burden on the authors of pull requests, or other developers in the community, to ensure that tests pass for the target. In particular, do not post comments (automated or manual) on a PR that derail or suggest a block on the PR based on tests failing for the target. Do not send automated messages or notifications (via any medium, including via `@)` to a PR author or others involved with a PR regarding the PR breaking tests on a tier 2 target, unless they have opted into such messages.
The RISCV team agrees not to do this.
> The target maintainers should regularly run the testsuite for the target, and should fix any test failures in a reasonably timely fashion.
The RISCV team will fix any issues in a timely manner.
Provide context when `?` can't be called because of `Result<_, E>`
When a method chain ending in `?` causes an E0277 because the expression's `Result::Err` variant doesn't have a type that can be converted to the `Result<_, E>` type parameter in the return type, provide additional context of which parts of the chain can and can't support the `?` operator.
```
error[E0277]: `?` couldn't convert the error to `String`
--> $DIR/question-mark-result-err-mismatch.rs:27:25
|
LL | fn bar() -> Result<(), String> {
| ------------------ expected `String` because of this
LL | let x = foo();
| ----- this has type `Result<_, String>`
...
LL | .map_err(|_| ())?;
| ---------------^ the trait `From<()>` is not implemented for `String`
| |
| this can't be annotated with `?` because it has type `Result<_, ()>`
|
= note: the question mark operation (`?`) implicitly performs a conversion on the error value using the `From` trait
= help: the following other types implement trait `From<T>`:
<String as From<char>>
<String as From<Box<str>>>
<String as From<Cow<'a, str>>>
<String as From<&str>>
<String as From<&mut str>>
<String as From<&String>>
= note: required for `Result<(), String>` to implement `FromResidual<Result<Infallible, ()>>`
```
Fix#72124.
Currently LLVM uses emutls by default
for some targets (such as android, openbsd),
but rust does not use it, because `has_thread_local` is false.
This commit has some changes to allow users to enable emutls:
1. add `-Zhas-thread-local` flag to specify
that std uses `#[thread_local]` instead of pthread key.
2. when using emutls, decorate symbol names
to find thread local symbol correctly.
3. change `-Zforce-emulated-tls` to `-Ztls-model=emulated`
to explicitly specify whether to generate emutls.
Remove `#[rustc_host]`, use internal desugaring
Also removed a way for users to explicitly specify the host param since that isn't particularly useful. This should eliminate any pain with encoding attributes across crates and etc.
r? `@compiler-errors`
coverage: Be more strict about what counts as a "visible macro"
This is a follow-up to the workaround in #117827, and I believe it now properly fixes#117788.
The old code treats a span as having a “visible macro” if it is part of a macro-expansion, and its parent callsite's context is the same as the body span's context. But if the body span is itself part of an expansion, the macro in question might not actually be visible from the body span. That results in the macro name's length being meaningless as a span offset.
We now only consider spans whose parent callsite is the same as the source callsite, i.e. the parent has no parent.
---
I've also included some related cleanup for the code added by #117827. That code was more complicated than normal, because I wanted it to be easy to backport to stable/beta.
Added shadowed hint for overlapping associated types
Previously, when you tried to set an associated type that is shadowed by an associated type in a subtrait, like this:
```rust
trait A {
type X;
}
trait B: A {
type X; // note: this is legal
}
impl<Y> Clone for Box<dyn B<X=Y, X=Y>> {
fn clone(&self) -> Self {
todo!()
}
}
you got a confusing error message, that says nothing about the shadowing:
error[E0719]: the value of the associated type `X` (from trait `B`) is already specified
--> test.rs:9:34
|
9 | impl<Y> Clone for Box<dyn B<X=Y, X=Y>> {
| --- ^^^ re-bound here
| |
| `X` bound here first
error[E0191]: the value of the associated type `X` (from trait `A`) must be specified
--> test.rs:9:27
|
2 | type X;
| ------ `X` defined here
...
9 | impl<Y> Clone for Box<dyn B<X=Y, X=Y>> {
| ^^^^^^^^^^^ help: specify the associated type: `B<X=Y, X=Y, X = Type>`
error: aborting due to 2 previous errors
Some errors have detailed explanations: E0191, E0719.
For more information about an error, try `rustc --explain E0191`.
```
Now instead, the error shows that the associated type is shadowed, and suggests renaming as a potential fix.
```rust
error[E0719]: the value of the associated type `X` in trait `B` is already specified
--> test.rs:9:34
|
9 | impl<Y> Clone for Box<dyn B<X=Y, X=Y>> {
| --- ^^^ re-bound here
| |
| `X` bound here first
error[E0191]: the value of the associated type `X` in `A` must be specified
--> test.rs:9:27
|
2 | type X;
| ------ `A::X` defined here
...
6 | type X; // note: this is legal
| ------ `A::X` shadowed here
...
9 | impl<Y> Clone for Box<dyn B<X=Y, X=Y>> {
| ^^^^^^^^^^^ associated type `X` must be specified
|
help: consider renaming this associated type
--> test.rs:2:5
|
2 | type X;
| ^^^^^^
help: consider renaming this associated type
--> test.rs:6:5
|
6 | type X; // note: this is legal
| ^^^^^^
```
error: aborting due to 2 previous errors
Some errors have detailed explanations: E0191, E0719.
For more information about an error, try `rustc --explain E0191`.
The rename help message is only emitted when the trait is local. This is true both for the supertrait as for the subtrait.
There might be cases where you can use the fully qualified path (for instance, in a where clause), but this PR currently does not deal with that.
fixes#100109
(continues from #117642, because I didn't know renaming the branch would close the PR)
Shadowing the associated type of a supertrait is allowed.
This however makes it impossible to set the associated type
of the supertrait in a dyn object.
This PR makes the error message for that case clearer, like
adding a note that shadowing is happening, as well as suggesting
renaming of one of the associated types.
r=petrochenckov
Use `unwinding` crate for unwinding on Xous platform
This patch adds support for using [unwinding](https://github.com/nbdd0121/unwinding) on platforms where libunwinding isn't viable. An example of such a platform is `riscv32imac-unknown-xous-elf`.
### Background
The Rust project maintains a fork of llvm at [llvm-project](https://github.com/rust-lang/llvm-project/) where it applies patches on top of the llvm project. This mostly seems to be to get unwinding support for the SGX project, and there may be other patches that I'm unaware of.
There is a lot of machinery in the build system to support compiling `libunwind` on other platforms, and I needed to add additional patches to llvm in order to add support for Xous.
Rather than continuing down this path, it seemed much easier to use a Rust-based library. The `unwinding` crate by `@nbdd0121` fits this description perfectly.
### Future work
This could potentially replace the custom patches for `libunwind` on other platforms such as SGX, and could enable unwinding support on many more exotic platforms.
### Anti-goals
This is not designed to replace `libunwind` on tier-one platforms or those where unwinding support already exists. There is already a well-established approach for unwinding there. Instead, this aims to enable unwinding on new platforms where C++ code may be difficult to compile.
Two places called `from_utf8_unchecked` for strings from `alloc_slice`,
and one's SAFETY comment said this was for lack of `alloc_str` -- so
let's just add that instead!
When a method chain ending in `?` causes an E0277 because the
expression's `Result::Err` variant doesn't have a type that can be
converted to the `Result<_, E>` type parameter in the return type,
provide additional context of which parts of the chain can and can't
support the `?` operator.
```
error[E0277]: `?` couldn't convert the error to `String`
--> $DIR/question-mark-result-err-mismatch.rs:28:25
|
LL | fn bar() -> Result<(), String> {
| ------------------ expected `String` because of this
LL | let x = foo();
| ----- this can be annotated with `?` because it has type `Result<String, String>`
LL | let one = x
LL | .map(|s| ())
| ----------- this can be annotated with `?` because it has type `Result<(), String>`
LL | .map_err(|_| ())?;
| ---------------^ the trait `From<()>` is not implemented for `String`
| |
| this can't be annotated with `?` because it has type `Result<(), ()>`
|
= note: the question mark operation (`?`) implicitly performs a conversion on the error value using the `From` trait
= help: the following other types implement trait `From<T>`:
<String as From<char>>
<String as From<Box<str>>>
<String as From<Cow<'a, str>>>
<String as From<&str>>
<String as From<&mut str>>
<String as From<&String>>
= note: required for `Result<(), String>` to implement `FromResidual<Result<Infallible, ()>>`
```
Fix#72124.
`build_session` is passed an `EarlyErrorHandler` and then constructs a
`Handler`. But the `EarlyErrorHandler` is still used for some time after
that.
This commit changes `build_session` so it consumes the passed
`EarlyErrorHandler`, and also drops it as soon as the `Handler` is
built. As a result, `parse_cfg` and `parse_check_cfg` now take a
`Handler` instead of an `EarlyErrorHandler`.
Although, we would like to avoid crashes whenever
possible, and that's why I wanted to make this API fallible. It's
looking pretty hard to do proper validation.
I think many of our APIs will unfortunately depend on the user doing
the correct thing since at the MIR level we are working on,
we expect types to have been checked already.
Add `deeply_normalize_for_diagnostics`, use it in coherence
r? lcnr
Normalize trait refs used for coherence error reporting with `-Ztrait-solver=next-coherence`.
Two things:
1. I said before that we can't add this to `TyErrCtxt` because we compute `OverlapResult`s even if there are no diagnostics being emitted, e.g. for a reservation impl.
2. I didn't want to add this to an `InferCtxtExt` trait because I felt it was unnecessary. I don't particularly care about the API though.
Pretty print `Fn<(..., ...)>` trait refs with parentheses (almost) always
It's almost always better, at least in diagnostics, to print `Fn(i32, u32)` instead of `Fn<(i32, u32)>`.
Related to but doesn't fix#118225. That needs a separate fix.
Add support for making lib features internal
We have the notion of an "internal" lang feature: a feature that is never intended to be stabilized, and using which can cause ICEs and other issues without that being considered a bug.
This extends that idea to lib features as well. It is an alternative to https://github.com/rust-lang/rust/pull/115623: instead of using an attribute to declare lib features internal, we simply do this based on the name. Everything ending in `_internals` or `_internal` is considered internal.
Then we rename `core_intrinsics` to `core_intrinsics_internal`, which fixes https://github.com/rust-lang/rust/issues/115597.
Add support for `gen fn`
This builds on #116447 to add support for `gen fn` functions. For the most part we follow the same approach as desugaring `async fn`, but replacing `Future` with `Iterator` and `async {}` with `gen {}` for the body.
The version implemented here uses the return type of a `gen fn` as the yield type. For example:
```rust
gen fn count_to_three() -> i32 {
yield 1;
yield 2;
yield 3;
}
```
In the future, I think we should experiment with a syntax like `gen fn count_to_three() yield i32 { ... }`, but that can go in another PR.
cc `@oli-obk` `@compiler-errors`
rustc_symbol_mangling,rustc_interface,rustc_driver_impl: Enforce `rustc::potential_query_instability` lint
We currently allow the `rustc::potential_query_instability` lint in `rustc_symbol_mangling`, `rustc_interface` and `rustc_driver_impl`. Handle each instance of the lint in these crates and then begin to enforce the lint in these crates.
Part of #84447 which is **E-help-wanted**.
Remove the `precise_pointer_size_matching` feature gate
`usize` and `isize` are special for pattern matching because their range might depend on the platform. To make code portable across platforms, the following is never considered exhaustive:
```rust
let x: usize = ...;
match x {
0..=18446744073709551615 => {}
}
```
Because of how rust handles constants, this also unfortunately counts `0..=usize::MAX` as non-exhaustive. The [`precise_pointer_size_matching`](https://github.com/rust-lang/rust/issues/56354) feature gate was introduced both for this convenience and for the possibility that the lang team could decide to allow the above.
Since then, [half-open range patterns](https://github.com/rust-lang/rust/issues/67264) have been implemented, and since #116692 they correctly support `usize`/`isize`:
```rust
match 0usize { // exhaustive!
0..5 => {}
5.. => {}
}
```
I believe this subsumes all the use cases of the feature gate. Moreover no attempt has been made to stabilize it in the 5 years of its existence. I therefore propose we retire this feature gate.
Closes https://github.com/rust-lang/rust/issues/56354
Tweak unclosed generics errors
Remove unnecessary span label for parse errors that already have a suggestion.
Provide structured suggestion to close generics in more cases.
Change prefetch to avoid deadlock
Was abled to reproduce the deadlock in #118205 and created a coredump when it happen. When looking at the backtraces I noticed that the prefetch of exported_symbols (Thread 17 frame 4) started after the "actual" exported_symbols (Thread 2 frame 18) but it also is working on some of the collect_crate_mono_items (Thread 17 frame12 ) that Thread 2 is blocked on resulting in a deadlock.
This PR results in less parallell work that can be done at the same time but from what I can find we do not call the query exported_symbols from multiple places in the same join call any more.
```
Thread 17 (Thread 0x7f87b6299700 (LWP 11370)):
#0 syscall () at ../sysdeps/unix/sysv/linux/x86_64/syscall.S:38
#1 0x00007f87be5166a9 in <parking_lot::condvar::Condvar>::wait_until_internal () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#2 0x00007f87be12d854 in <rustc_query_system::query::job::QueryLatch>::wait_on () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#3 0x00007f87bd27d16f in rustc_query_system::query::plumbing::try_execute_query::<rustc_query_impl::DynamicConfig<rustc_query_system::query::caches::VecCache<rustc_span::def_id::CrateNum, rustc_middle::query::erase::Erased<[u8; 16]>>, false, false, false>, rustc_query_impl::plumbing::QueryCtxt, false> () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#4 0x00007f87bd0b5b6a in rustc_query_impl::query_impl::exported_symbols::get_query_non_incr::__rust_end_short_backtrace () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#5 0x00007f87bdaebb0a in rustc_metadata::rmeta::encoder::encode_metadata::{closure#1}::{closure#1} () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#6 0x00007f87bdae1509 in rayon_core::join::join_context::call_b::<core::option::Option<rustc_data_structures::marker::FromDyn<&[(rustc_middle::middle::exported_symbols::ExportedSymbol, rustc_middle::middle::exported_symbols::SymbolExportInfo)]>>, rayon_core::join::join::call<core::option::Option<rustc_data_structures::marker::FromDyn<&[(rustc_middle::middle::exported_symbols::ExportedSymbol, rustc_middle::middle::exported_symbols::SymbolExportInfo)]>>, rustc_data_structures::sync::parallel::enabled::join<rustc_metadata::rmeta::encoder::encode_metadata::{closure#1}::{closure#0}, rustc_metadata::rmeta::encoder::encode_metadata::{closure#1}::{closure#1}, (), &[(rustc_middle::middle::exported_symbols::ExportedSymbol, rustc_middle::middle::exported_symbols::SymbolExportInfo)]>::{closure#0}::{closure#1}>::{closure#0}>::{closure#0} () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#7 0x00007f87bdae32ff in <rayon_core::job::StackJob<rayon_core::latch::SpinLatch, rayon_core::join::join_context::call_b<core::option::Option<rustc_data_structures::marker::FromDyn<&[(rustc_middle::middle::exported_symbols::ExportedSymbol, rustc_middle::middle::exported_symbols::SymbolExportInfo)]>>, rayon_core::join::join::call<core::option::Option<rustc_data_structures::marker::FromDyn<&[(rustc_middle::middle::exported_symbols::ExportedSymbol, rustc_middle::middle::exported_symbols::SymbolExportInfo)]>>, rustc_data_structures::sync::parallel::enabled::join<rustc_metadata::rmeta::encoder::encode_metadata::{closure#1}::{closure#0}, rustc_metadata::rmeta::encoder::encode_metadata::{closure#1}::{closure#1}, (), &[(rustc_middle::middle::exported_symbols::ExportedSymbol, rustc_middle::middle::exported_symbols::SymbolExportInfo)]>::{closure#0}::{closure#1}>::{closure#0}>::{closure#0}, core::option::Option<rustc_data_structures::marker::FromDyn<&[(rustc_middle::middle::exported_symbols::ExportedSymbol, rustc_middle::middle::exported_symbols::SymbolExportInfo)]>>> as rayon_core::job::Job>::execute () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#8 0x00007f87b8338823 in <rayon_core::registry::WorkerThread>::wait_until_cold () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#9 0x00007f87bc2edbaf in rayon_core::join::join_context::<rayon::iter::plumbing::bridge_producer_consumer::helper<rayon::vec::DrainProducer<rustc_middle::mir::mono::MonoItem>, rayon::iter::for_each::ForEachConsumer<rustc_data_structures::sync::parallel::enabled::par_for_each_in<rustc_middle::mir::mono::MonoItem, alloc::vec::Vec<rustc_middle::mir::mono::MonoItem>, rustc_monomorphize::collector::collect_crate_mono_items::{closure#1}::{closure#0}>::{closure#0}::{closure#0}>>::{closure#0}, rayon::iter::plumbing::bridge_producer_consumer::helper<rayon::vec::DrainProducer<rustc_middle::mir::mono::MonoItem>, rayon::iter::for_each::ForEachConsumer<rustc_data_structures::sync::parallel::enabled::par_for_each_in<rustc_middle::mir::mono::MonoItem, alloc::vec::Vec<rustc_middle::mir::mono::MonoItem>, rustc_monomorphize::collector::collect_crate_mono_items::{closure#1}::{closure#0}>::{closure#0}::{closure#0}>>::{closure#1}, (), ()>::{closure#0} () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#10 0x00007f87bc2ed313 in rayon_core::registry::in_worker::<rayon_core::join::join_context<rayon::iter::plumbing::bridge_producer_consumer::helper<rayon::vec::DrainProducer<rustc_middle::mir::mono::MonoItem>, rayon::iter::for_each::ForEachConsumer<rustc_data_structures::sync::parallel::enabled::par_for_each_in<rustc_middle::mir::mono::MonoItem, alloc::vec::Vec<rustc_middle::mir::mono::MonoItem>, rustc_monomorphize::collector::collect_crate_mono_items::{closure#1}::{closure#0}>::{closure#0}::{closure#0}>>::{closure#0}, rayon::iter::plumbing::bridge_producer_consumer::helper<rayon::vec::DrainProducer<rustc_middle::mir::mono::MonoItem>, rayon::iter::for_each::ForEachConsumer<rustc_data_structures::sync::parallel::enabled::par_for_each_in<rustc_middle::mir::mono::MonoItem, alloc::vec::Vec<rustc_middle::mir::mono::MonoItem>, rustc_monomorphize::collector::collect_crate_mono_items::{closure#1}::{closure#0}>::{closure#0}::{closure#0}>>::{closure#1}, (), ()>::{closure#0}, ((), ())> () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#11 0x00007f87bc2db2a4 in rayon::iter::plumbing::bridge_producer_consumer::helper::<rayon::vec::DrainProducer<rustc_middle::mir::mono::MonoItem>, rayon::iter::for_each::ForEachConsumer<rustc_data_structures::sync::parallel::enabled::par_for_each_in<rustc_middle::mir::mono::MonoItem, alloc::vec::Vec<rustc_middle::mir::mono::MonoItem>, rustc_monomorphize::collector::collect_crate_mono_items::{closure#1}::{closure#0}>::{closure#0}::{closure#0}>> () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#12 0x00007f87bc2eead2 in <rayon_core::job::StackJob<rayon_core::latch::SpinLatch, rayon_core::join::join_context::call_b<(), rayon::iter::plumbing::bridge_producer_consumer::helper<rayon::vec::DrainProducer<rustc_middle::mir::mono::MonoItem>, rayon::iter::for_each::ForEachConsumer<rustc_data_structures::sync::parallel::enabled::par_for_each_in<rustc_middle::mir::mono::MonoItem, alloc::vec::Vec<rustc_middle::mir::mono::MonoItem>, rustc_monomorphize::collector::collect_crate_mono_items::{closure#1}::{closure#0}>::{closure#0}::{closure#0}>>::{closure#1}>::{closure#0}, ()> as rayon_core::job::Job>::execute () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#13 0x00007f87b8338823 in <rayon_core::registry::WorkerThread>::wait_until_cold () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#14 0x00007f87be52d1f9 in <rayon_core::registry::ThreadBuilder>::run () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#15 0x00007f87b8461c57 in <scoped_tls::ScopedKey<rustc_span::SessionGlobals>>::set::<rustc_interface::util::run_in_thread_pool_with_globals<rustc_interface::interface::run_compiler<core::result::Result<(), rustc_span::ErrorGuaranteed>, rustc_driver_impl::run_compiler::{closure#0}>::{closure#0}, core::result::Result<(), rustc_span::ErrorGuaranteed>>::{closure#3}::{closure#0}::{closure#0}::{closure#0}, ()> () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#16 0x00007f87b846e465 in rustc_span::set_session_globals_then::<(), rustc_interface::util::run_in_thread_pool_with_globals<rustc_interface::interface::run_compiler<core::result::Result<(), rustc_span::ErrorGuaranteed>, rustc_driver_impl::run_compiler::{closure#0}>::{closure#0}, core::result::Result<(), rustc_span::ErrorGuaranteed>>::{closure#3}::{closure#0}::{closure#0}::{closure#0}> () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#17 0x00007f87b844f282 in <<crossbeam_utils:🧵:ScopedThreadBuilder>::spawn<<rayon_core::ThreadPoolBuilder>::build_scoped<rustc_interface::util::run_in_thread_pool_with_globals<rustc_interface::interface::run_compiler<core::result::Result<(), rustc_span::ErrorGuaranteed>, rustc_driver_impl::run_compiler::{closure#0}>::{closure#0}, core::result::Result<(), rustc_span::ErrorGuaranteed>>::{closure#3}::{closure#0}::{closure#0}, rustc_interface::util::run_in_thread_pool_with_globals<rustc_interface::interface::run_compiler<core::result::Result<(), rustc_span::ErrorGuaranteed>, rustc_driver_impl::run_compiler::{closure#0}>::{closure#0}, core::result::Result<(), rustc_span::ErrorGuaranteed>>::{closure#3}::{closure#0}::{closure#1}, core::result::Result<(), rustc_span::ErrorGuaranteed>>::{closure#0}::{closure#0}::{closure#0}, ()>::{closure#0} as core::ops::function::FnOnce<()>>::call_once::{shim:vtable#0} () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#18 0x00007f87b846af58 in <<std:🧵:Builder>::spawn_unchecked_<alloc::boxed::Box<dyn core::ops::function::FnOnce<(), Output = ()> + core::marker::Send>, ()>::{closure#1} as core::ops::function::FnOnce<()>>::call_once::{shim:vtable#0} () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#19 0x00007f87b7898e85 in std::sys::unix:🧵:Thread:🆕:thread_start () from /home/andjo403/.rustup/toolchains/stage1/lib/libstd-d570b0650d35d951.so
#20 0x00007f87b7615609 in start_thread (arg=<optimized out>) at pthread_create.c:477
#21 0x00007f87b7755133 in clone () at ../sysdeps/unix/sysv/linux/x86_64/clone.S:95
Thread 2 (Thread 0x7f87b729b700 (LWP 11368)):
#0 syscall () at ../sysdeps/unix/sysv/linux/x86_64/syscall.S:38
#1 0x00007f87b7887b51 in std::sys::unix::locks::futex_condvar::Condvar::wait () from /home/andjo403/.rustup/toolchains/stage1/lib/libstd-d570b0650d35d951.so
#2 0x00007f87b8339478 in <rayon_core::sleep::Sleep>::sleep () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#3 0x00007f87b83387c3 in <rayon_core::registry::WorkerThread>::wait_until_cold () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#4 0x00007f87bc2edbaf in rayon_core::join::join_context::<rayon::iter::plumbing::bridge_producer_consumer::helper<rayon::vec::DrainProducer<rustc_middle::mir::mono::MonoItem>, rayon::iter::for_each::ForEachConsumer<rustc_data_structures::sync::parallel::enabled::par_for_each_in<rustc_middle::mir::mono::MonoItem, alloc::vec::Vec<rustc_middle::mir::mono::MonoItem>, rustc_monomorphize::collector::collect_crate_mono_items::{closure#1}::{closure#0}>::{closure#0}::{closure#0}>>::{closure#0}, rayon::iter::plumbing::bridge_producer_consumer::helper<rayon::vec::DrainProducer<rustc_middle::mir::mono::MonoItem>, rayon::iter::for_each::ForEachConsumer<rustc_data_structures::sync::parallel::enabled::par_for_each_in<rustc_middle::mir::mono::MonoItem, alloc::vec::Vec<rustc_middle::mir::mono::MonoItem>, rustc_monomorphize::collector::collect_crate_mono_items::{closure#1}::{closure#0}>::{closure#0}::{closure#0}>>::{closure#1}, (), ()>::{closure#0} () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#5 0x00007f87bc2ed313 in rayon_core::registry::in_worker::<rayon_core::join::join_context<rayon::iter::plumbing::bridge_producer_consumer::helper<rayon::vec::DrainProducer<rustc_middle::mir::mono::MonoItem>, rayon::iter::for_each::ForEachConsumer<rustc_data_structures::sync::parallel::enabled::par_for_each_in<rustc_middle::mir::mono::MonoItem, alloc::vec::Vec<rustc_middle::mir::mono::MonoItem>, rustc_monomorphize::collector::collect_crate_mono_items::{closure#1}::{closure#0}>::{closure#0}::{closure#0}>>::{closure#0}, rayon::iter::plumbing::bridge_producer_consumer::helper<rayon::vec::DrainProducer<rustc_middle::mir::mono::MonoItem>, rayon::iter::for_each::ForEachConsumer<rustc_data_structures::sync::parallel::enabled::par_for_each_in<rustc_middle::mir::mono::MonoItem, alloc::vec::Vec<rustc_middle::mir::mono::MonoItem>, rustc_monomorphize::collector::collect_crate_mono_items::{closure#1}::{closure#0}>::{closure#0}::{closure#0}>>::{closure#1}, (), ()>::{closure#0}, ((), ())> () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#6 0x00007f87bc2db50c in <rayon::vec::IntoIter<rustc_middle::mir::mono::MonoItem> as rayon::iter::ParallelIterator>::for_each::<rustc_data_structures::sync::parallel::enabled::par_for_each_in<rustc_middle::mir::mono::MonoItem, alloc::vec::Vec<rustc_middle::mir::mono::MonoItem>, rustc_monomorphize::collector::collect_crate_mono_items::{closure#1}::{closure#0}>::{closure#0}::{closure#0}> () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#7 0x00007f87bc2e8cd7 in <rustc_session::session::Session>::time::<(), rustc_monomorphize::collector::collect_crate_mono_items::{closure#1}> () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#8 0x00007f87bc2b8f2c in rustc_monomorphize::collector::collect_crate_mono_items () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#9 0x00007f87bc2c30d9 in rustc_monomorphize::partitioning::collect_and_partition_mono_items () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#10 0x00007f87bcf2cde6 in rustc_query_impl::plumbing::__rust_begin_short_backtrace::<rustc_query_impl::query_impl::collect_and_partition_mono_items::dynamic_query::{closure#2}::{closure#0}, rustc_middle::query::erase::Erased<[u8; 24]>> () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#11 0x00007f87bd156a3c in <rustc_query_impl::query_impl::collect_and_partition_mono_items::dynamic_query::{closure#2} as core::ops::function::FnOnce<(rustc_middle::ty::context::TyCtxt, ())>>::call_once () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#12 0x00007f87bd1c6a7d in rustc_query_system::query::plumbing::try_execute_query::<rustc_query_impl::DynamicConfig<rustc_query_system::query::caches::SingleCache<rustc_middle::query::erase::Erased<[u8; 24]>>, false, false, false>, rustc_query_impl::plumbing::QueryCtxt, false> () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#13 0x00007f87bd15df40 in rustc_query_impl::query_impl::collect_and_partition_mono_items::get_query_non_incr::__rust_end_short_backtrace () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#14 0x00007f87bd7a0ad9 in rustc_codegen_ssa:🔙:symbol_export::exported_symbols_provider_local () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#15 0x00007f87bcf29acb in rustc_query_impl::plumbing::__rust_begin_short_backtrace::<rustc_query_impl::query_impl::exported_symbols::dynamic_query::{closure#2}::{closure#0}, rustc_middle::query::erase::Erased<[u8; 16]>> () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#16 0x00007f87bcfdb350 in <rustc_query_impl::query_impl::exported_symbols::dynamic_query::{closure#2} as core::ops::function::FnOnce<(rustc_middle::ty::context::TyCtxt, rustc_span::def_id::CrateNum)>>::call_once () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#17 0x00007f87bd27d64f in rustc_query_system::query::plumbing::try_execute_query::<rustc_query_impl::DynamicConfig<rustc_query_system::query::caches::VecCache<rustc_span::def_id::CrateNum, rustc_middle::query::erase::Erased<[u8; 16]>>, false, false, false>, rustc_query_impl::plumbing::QueryCtxt, false> () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#18 0x00007f87bd0b5b6a in rustc_query_impl::query_impl::exported_symbols::get_query_non_incr::__rust_end_short_backtrace () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#19 0x00007f87bda927ce in rustc_middle::query::plumbing::query_get_at::<rustc_query_system::query::caches::VecCache<rustc_span::def_id::CrateNum, rustc_middle::query::erase::Erased<[u8; 16]>>> () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#20 0x00007f87bda9c93f in <rustc_metadata::rmeta::encoder::EncodeContext>::encode_crate_root () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#21 0x00007f87bdaa6ef7 in rustc_metadata::rmeta::encoder::encode_metadata_impl () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#22 0x00007f87bdae0b77 in rayon_core::join::join_context::<rayon_core::join::join::call<core::option::Option<rustc_data_structures::marker::FromDyn<()>>, rustc_data_structures::sync::parallel::enabled::join<rustc_metadata::rmeta::encoder::encode_metadata::{closure#0}, rustc_metadata::rmeta::encoder::encode_metadata::{closure#1}, (), ()>::{closure#0}::{closure#0}>::{closure#0}, rayon_core::join::join::call<core::option::Option<rustc_data_structures::marker::FromDyn<()>>, rustc_data_structures::sync::parallel::enabled::join<rustc_metadata::rmeta::encoder::encode_metadata::{closure#0}, rustc_metadata::rmeta::encoder::encode_metadata::{closure#1}, (), ()>::{closure#0}::{closure#1}>::{closure#0}, core::option::Option<rustc_data_structures::marker::FromDyn<()>>, core::option::Option<rustc_data_structures::marker::FromDyn<()>>>::{closure#0} () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#23 0x00007f87bdaded2f in rayon_core::registry::in_worker::<rayon_core::join::join_context<rayon_core::join::join::call<core::option::Option<rustc_data_structures::marker::FromDyn<()>>, rustc_data_structures::sync::parallel::enabled::join<rustc_metadata::rmeta::encoder::encode_metadata::{closure#0}, rustc_metadata::rmeta::encoder::encode_metadata::{closure#1}, (), ()>::{closure#0}::{closure#0}>::{closure#0}, rayon_core::join::join::call<core::option::Option<rustc_data_structures::marker::FromDyn<()>>, rustc_data_structures::sync::parallel::enabled::join<rustc_metadata::rmeta::encoder::encode_metadata::{closure#0}, rustc_metadata::rmeta::encoder::encode_metadata::{closure#1}, (), ()>::{closure#0}::{closure#1}>::{closure#0}, core::option::Option<rustc_data_structures::marker::FromDyn<()>>, core::option::Option<rustc_data_structures::marker::FromDyn<()>>>::{closure#0}, (core::option::Option<rustc_data_structures::marker::FromDyn<()>>, core::option::Option<rustc_data_structures::marker::FromDyn<()>>)> () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#24 0x00007f87bdaa5a03 in rustc_metadata::rmeta::encoder::encode_metadata () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#25 0x00007f87bdaed628 in rustc_metadata::fs::encode_and_write_metadata () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#26 0x00007f87b86608be in rustc_interface::passes::start_codegen () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#27 0x00007f87b8664946 in <rustc_middle::ty::context::GlobalCtxt>::enter::<<rustc_interface::queries::Queries>::codegen_and_build_linker::{closure#0}, core::result::Result<rustc_interface::queries::Linker, rustc_span::ErrorGuaranteed>> () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#28 0x00007f87b864db00 in <rustc_interface::queries::Queries>::codegen_and_build_linker () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#29 0x00007f87b849400f in <rustc_interface::interface::Compiler>::enter::<rustc_driver_impl::run_compiler::{closure#0}::{closure#0}, core::result::Result<core::option::Option<rustc_interface::queries::Linker>, rustc_span::ErrorGuaranteed>> () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#30 0x00007f87b846e067 in rustc_span::set_source_map::<core::result::Result<(), rustc_span::ErrorGuaranteed>, rustc_interface::interface::run_compiler<core::result::Result<(), rustc_span::ErrorGuaranteed>, rustc_driver_impl::run_compiler::{closure#0}>::{closure#0}::{closure#0}> () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#31 0x00007f87b844dc13 in <rayon_core::thread_pool::ThreadPool>::install::<rustc_interface::interface::run_compiler<core::result::Result<(), rustc_span::ErrorGuaranteed>, rustc_driver_impl::run_compiler::{closure#0}>::{closure#0}, core::result::Result<(), rustc_span::ErrorGuaranteed>>::{closure#0} () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#32 0x00007f87b84509a1 in <rayon_core::job::StackJob<rayon_core::latch::LatchRef<rayon_core::latch::LockLatch>, <rayon_core::registry::Registry>::in_worker_cold<<rayon_core::thread_pool::ThreadPool>::install<rustc_interface::interface::run_compiler<core::result::Result<(), rustc_span::ErrorGuaranteed>, rustc_driver_impl::run_compiler::{closure#0}>::{closure#0}, core::result::Result<(), rustc_span::ErrorGuaranteed>>::{closure#0}, core::result::Result<(), rustc_span::ErrorGuaranteed>>::{closure#0}::{closure#0}, core::result::Result<(), rustc_span::ErrorGuaranteed>> as rayon_core::job::Job>::execute () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#33 0x00007f87b8338823 in <rayon_core::registry::WorkerThread>::wait_until_cold () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#34 0x00007f87be52d1f9 in <rayon_core::registry::ThreadBuilder>::run () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#35 0x00007f87b8461c57 in <scoped_tls::ScopedKey<rustc_span::SessionGlobals>>::set::<rustc_interface::util::run_in_thread_pool_with_globals<rustc_interface::interface::run_compiler<core::result::Result<(), rustc_span::ErrorGuaranteed>, rustc_driver_impl::run_compiler::{closure#0}>::{closure#0}, core::result::Result<(), rustc_span::ErrorGuaranteed>>::{closure#3}::{closure#0}::{closure#0}::{closure#0}, ()> () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#36 0x00007f87b846e465 in rustc_span::set_session_globals_then::<(), rustc_interface::util::run_in_thread_pool_with_globals<rustc_interface::interface::run_compiler<core::result::Result<(), rustc_span::ErrorGuaranteed>, rustc_driver_impl::run_compiler::{closure#0}>::{closure#0}, core::result::Result<(), rustc_span::ErrorGuaranteed>>::{closure#3}::{closure#0}::{closure#0}::{closure#0}> () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#37 0x00007f87b844f282 in <<crossbeam_utils:🧵:ScopedThreadBuilder>::spawn<<rayon_core::ThreadPoolBuilder>::build_scoped<rustc_interface::util::run_in_thread_pool_with_globals<rustc_interface::interface::run_compiler<core::result::Result<(), rustc_span::ErrorGuaranteed>, rustc_driver_impl::run_compiler::{closure#0}>::{closure#0}, core::result::Result<(), rustc_span::ErrorGuaranteed>>::{closure#3}::{closure#0}::{closure#0}, rustc_interface::util::run_in_thread_pool_with_globals<rustc_interface::interface::run_compiler<core::result::Result<(), rustc_span::ErrorGuaranteed>, rustc_driver_impl::run_compiler::{closure#0}>::{closure#0}, core::result::Result<(), rustc_span::ErrorGuaranteed>>::{closure#3}::{closure#0}::{closure#1}, core::result::Result<(), rustc_span::ErrorGuaranteed>>::{closure#0}::{closure#0}::{closure#0}, ()>::{closure#0} as core::ops::function::FnOnce<()>>::call_once::{shim:vtable#0} () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#38 0x00007f87b846af58 in <<std:🧵:Builder>::spawn_unchecked_<alloc::boxed::Box<dyn core::ops::function::FnOnce<(), Output = ()> + core::marker::Send>, ()>::{closure#1} as core::ops::function::FnOnce<()>>::call_once::{shim:vtable#0} () from /home/andjo403/.rustup/toolchains/stage1/lib/librustc_driver-70ddb84e8f7ce707.so
#39 0x00007f87b7898e85 in std::sys::unix:🧵:Thread:🆕:thread_start () from /home/andjo403/.rustup/toolchains/stage1/lib/libstd-d570b0650d35d951.so
#40 0x00007f87b7615609 in start_thread (arg=<optimized out>) at pthread_create.c:477
#41 0x00007f87b7755133 in clone () at ../sysdeps/unix/sysv/linux/x86_64/clone.S:95
```
fixes#118205fixes#117759 from the latest logs it is the same query map as in #118205fixes#118529fixes#117784
cc #118206
r? `@SparrowLii`