Get rid of `check_opaque_type_well_formed`
Instead, replicate it by improving the span of the opaque in `check_opaque_meets_bounds`.
This has two consequences:
1. We now prefer "concrete type differs" errors, since we'll hit those first before we check the opaque is WF.
2. Spans have gotten slightly worse.
Specifically, (2.) could be improved by adding a new obligation cause that explains that the definition's environment has stronger assumptions than the declaration.
r? lcnr
[StableMIR] API to retrieve definitions from crates
Add functions to retrieve function definitions and static items from all crates (local and external).
For external crates, we're still missing items from trait implementation and primitives.
r? ````@compiler-errors:```` Do you know what is the best way to retrieve the associated items for primitives and trait implementations for external crates? Thanks!
Add functions to retrieve function definitions and static items from
all crates (local and external).
For external crates, add a query to retrieve the number of defs in a
foreign crate.
mark some target features as 'forbidden' so they cannot be (un)set with -Ctarget-feature
The context for this is https://github.com/rust-lang/rust/issues/116344: some target features change the way floats are passed between functions. Changing those target features is unsound as code compiled for the same target may now use different ABIs.
So this introduces a new concept of "forbidden" target features (on top of the existing "stable " and "unstable" categories), and makes it a hard error to (un)set such a target feature. For now, the x86 and ARM feature `soft-float` is on that list. We'll have to make some effort to collect more relevant features, and similar features from other targets, but that can happen after the basic infrastructure for this landed. (These features are being collected in https://github.com/rust-lang/rust/issues/131799.)
I've made this a warning for now to give people some time to speak up if this would break something.
MCP: https://github.com/rust-lang/compiler-team/issues/780
Remove unnecessary pub enum glob-imports from `rustc_middle::ty`
We used to have an idiom in the compiler where we'd prefix or suffix all the variants of an enum, for example `BoundRegionKind`, with something like `Br`, and then *glob-import* that enum variant directly.
`@noratrieb` brought this up, and I think that it's easier to read when we just use the normal style `EnumName::Variant`.
This PR is a bit large, but it's just naming.
The only somewhat opinionated change that this PR does is rename `BorrowKind::Imm` to `BorrowKind::Immutable` and same for the other variants. I think these enums are used sparingly enough that the extra length is fine.
r? `@noratrieb` or reassign
Use backticks instead of single quotes for library feature names in diagnostics
This PR changes the text of library feature errors for using unstable or body-unstable items. Displaying library feature names in backticks is consistent with other diagnostics (e.g. those from `rustc_passes`) and with the `reason`s on unstable attributes in the library. Additionally, this simplifies diagnostics when supporting multiple unstable attributes on items (see #131824) since `DiagSymbolList` also displays symbols using backticks.
compiler: Directly use rustc_abi almost everywhere
Use rustc_abi instead of rustc_target where applicable. This is mostly described by the following substitutions:
```rust
match path_substring {
rustc_target::spec::abi::Abi => rustc_abi::ExternAbi,
rustc_target::abi::call => rustc_target::callconv,
rustc_target::abi => rustc_abi,
}
```
A number of spot-fixes make that not quite the whole story.
The main exception is in 33edc68 where I get a lot more persnickety about how things are imported, especially in `rustc_middle::ty::layout`, not just from where. This includes putting an end to a reexport of `rustc_middle::ty::ReprOptions`, for the same reason that the rest of this change is happening: reexports mostly confound things.
This notably omits rustc_passes and the ast crates, as I'm still examining a question I have about how they do stability checking of `extern "Abi"` strings and if I can simplify their logic. The rustc_abi and rustc_target crates also go untouched because they will be entangled in that cleanup.
r? compiler-errors
This is consistent with all other diagnostics I could find containing
features and enables the use of `DiagSymbolList` for generalizing
diagnostics for unstable library features to multiple features.
continue `TypingMode` refactor
There are still quite a few places which (indirectly) rely on the `Reveal` of a `ParamEnv`, but we're slowly getting there
r? `@compiler-errors`
Remove region from adjustments
It's not necessary to store this region, because it's only used in THIR and MemCat/ExprUse, both of which already basically only deal with erased regions anyways.
Try to point out when edition 2024 lifetime capture rules cause borrowck issues
Lifetime capture rules in 2024 are modified to capture more lifetimes, which sometimes lead to some non-local borrowck errors. This PR attempts to link these back together with a useful note pointing out the capture rule changes.
This is not a blocking concern, but I'd appreciate feedback (though, again, I'd like to stress that I don't want to block this PR on this): I'm worried about this note drowning in the sea of other diagnostics that borrowck emits. I was tempted to change the level of the note to `.span_warn` just so it would show up in a different color. Thoughts?
Fixes#130545
Opening as a draft first since it's stacked on #131183.
r? `@ghost`
Rename `rustc_abi::Abi` to `BackendRepr`
Remove the confabulation of `rustc_abi::Abi` with what "ABI" actually means by renaming it to `BackendRepr`, and rename `Abi::Aggregate` to `BackendRepr::Memory`. The type never actually represented how things are passed, as that has to have `PassMode` considered, at minimum, but rather it just is how we represented some things to the backend. This conflation arose because LLVM, the primary backend at the time, would lower certain IR forms using certain ABIs. Even that only somewhat was true, as it broke down when one ventured significantly afield of what is described by the System V AMD64 ABI either by using different architectures, ABI-modifying IR annotations, the same architecture **with different ISA extensions enabled**, or other... unexpected delights.
Unfortunately both names are still somewhat of a misnomer right now, as people have written code for years based on this misunderstanding. Still, their original names are even moreso, and for better or worse, this backend code hasn't received as much maintenance as the rest of the compiler, lately. Actually arriving at a correct end-state will simply require us to disentangle a lot of code in order to fix, much of it pointlessly repeated in several places. Thus this is not an "actual fix", just a way to deflect further misunderstandings.
The initial naming of "Abi" was an awful mistake, conveying wrong ideas
about how psABIs worked and even more about what the enum meant.
It was only meant to represent the way the value would be described to
a codegen backend as it was lowered to that intermediate representation.
It was never meant to mean anything about the actual psABI handling!
The conflation is because LLVM typically will associate a certain form
with a certain ABI, but even that does not hold when the special cases
that actually exist arise, plus the IR annotations that modify the ABI.
Reframe `rustc_abi::Abi` as the `BackendRepr` of the type, and rename
`BackendRepr::Aggregate` as `BackendRepr::Memory`. Unfortunately, due to
the persistent misunderstandings, this too is now incorrect:
- Scattered ABI-relevant code is entangled with BackendRepr
- We do not always pre-compute a correct BackendRepr that reflects how
we "actually" want this value to be handled, so we leave the backend
interface to also inject various special-cases here
- In some cases `BackendRepr::Memory` is a "real" aggregate, but in
others it is in fact using memory, and in some cases it is a scalar!
Our rustc-to-backend lowering code handles this sort of thing right now.
That will eventually be addressed by lifting duplicated lowering code
to either rustc_codegen_ssa or rustc_target as appropriate.
Add `LayoutS::is_uninhabited` and use it
Use accessors for the things that accessors are good at: reducing everyone's need to be nosy and peek at the internals of every data structure.
compiler: rename LayoutS to LayoutData
Bid `LayoutS` goodbye because it looks like a typo.
`LayoutS` is the last of the types that use the "`{TypeName}` is the interned type, `{TypeName}S` is the backing data that is interned" convention. This is pretty confusing to those not intimately familiar with the history of rustc's names for its types over time, and doubly so now that there are no other examples in the tree. Abolish this convention.