Clarifications for set_nonblocking methods
Closes#129903.
The issue mentions that `send`, `recv` and other operations are interpreted by some users as methods of `TcpSocket` which led to confusion since it hasn't them. To fix it I added "system" into the documentation as being more precise for two reasons:
* it's makes it clear that these names are system operations;
* it doesn't point to the location of these methods like `libc` because not every system is POSIX compatible.
Update `catch_unwind` doc comments for `c_unwind`
Updates `catch_unwind` doc comments to indicate that catching a foreign exception _will no longer_ be UB. Instead, there are two possible behaviors, though it is not specified which one an implementation will choose.
Nominated for t-lang to confirm that they are okay with making such a promise based on t-opsem FCP, or whether they would like to be included in the FCP.
Related: https://github.com/rust-lang/rust/issues/74990, https://github.com/rust-lang/rust/issues/115285, https://github.com/rust-lang/reference/pull/1226
These were disabled because Apple uses a special ABI for `f16`.
`compiler-builtins` merged a fix for this in [1], which has since
propagated to rust-lang/rust. Enable tests since there should be no
remaining issues on these platforms.
[1]: https://github.com/rust-lang/compiler-builtins/pull/675
Enable `f16` tests on platforms that were missing conversion symbols
The only requirement for `f16` support, aside from LLVM not crashing and no ABI issues, is that symbols to convert to and from `f32` are available. Since the update to compiler-builtins in https://github.com/rust-lang/rust/pull/125016, we now provide these on all platforms.
This also enables `f16` math since there are no further requirements.
Still excluded are platforms for which LLVM emits infinitely-recursing code.
try-job: arm-android
try-job: test-various
try-job: x86_64-fuchsia
The only requirement for `f16` support, aside from LLVM not crashing and
no ABI issues, is that symbols to convert to and from `f32` are
available. Since the update to compiler-builtins in [1], we now provide
these on all platforms.
This also enables `f16` math since there are no further requirements.
Still excluded are platforms for which LLVM emits infinitely-recursing
code.
[1]: https://github.com/rust-lang/rust/pull/125016
update `compiler-builtins` to 0.1.126
this requires the addition of a bootstrap variant of the new `naked_asm!` macro
r? `@tgross35`
extracted from https://github.com/rust-lang/rust/pull/128651
Revert Break into the debugger on panic (129019)
This was talked about a bit at a recent libs meeting. While I think experimenting with this is worthwhile, I am nervous about this new behaviour reaching stable. We've already reverted on one tier 1 platform (Linux, https://github.com/rust-lang/rust/pull/130810) which means we have differing semantics on different tier 1 platforms. Also the fact it triggers even when `catch_unwind` is used to catch the panic means it can be very noisy in some projects.
At the very least I think it could use some more discussion before being instantly stable. I think this could maybe be re-landed with an environment variable to control/override the behaviour. But that part would likely need a libs-api decision.
cc ````@workingjubilee```` ````@kromych````
Since the stabilization in #127679 has reached stage0, 1.82-beta, we can
start using `&raw` freely, and even the soft-deprecated `ptr::addr_of!`
and `ptr::addr_of_mut!` can stop allowing the unstable feature.
I intentionally did not change any documentation or tests, but the rest
of those macro uses are all now using `&raw const` or `&raw mut` in the
standard library.
Rollup of 6 pull requests
Successful merges:
- #130549 (Add RISC-V vxworks targets)
- #130595 (Initial std library support for NuttX)
- #130734 (Fix: ices on virtual-function-elimination about principal trait)
- #130787 (Ban combination of GCE and new solver)
- #130809 (Update llvm triple for OpenHarmony targets)
- #130810 (Don't trap into the debugger on panics under Linux)
r? `@ghost`
`@rustbot` modify labels: rollup
Initial std library support for NuttX
This PR add the initial libstd support for NuttX platform (Tier 3), currently it depends on https://github.com/rust-lang/libc/pull/3909 which provide the essential libc definitions.
Add `File` constructors that return files wrapped with a buffer
In addition to the light convenience, these are intended to raise visibility that buffering is something you should consider when opening a file, since unbuffered I/O is a common performance footgun to Rust newcomers.
ACP: https://github.com/rust-lang/libs-team/issues/446
Tracking Issue: #130804
The latest versions of `memchr` experience LTO-related issues when
compiling for windows-gnu [1], so needs to be pinned. The issue is
present in the standard library.
`memchr` has been pinned in `rustc_ast`, but since the workspace was
recently split, this pin no longer has any effect on library crates.
Resolve this by adding `memchr` as an _unused_ dependency in `std`,
pinned to 2.5. Additionally, remove the pin in `rustc_ast` to allow
non-library crates to upgrade to the latest version.
Link: https://github.com/rust-lang/rust/issues/127890 [1]
Add test for `available_parallelism()`
This is a redo of [this PR](https://github.com/rust-lang/rust/pull/104095).
I changed the location of the test as per comments in the original thread. Otherwise the test is practically the same.
try-job: test-various
Remove macOS 10.10 dynamic linker bug workaround
Rust's current minimum macOS version is 10.12, so the hack can be removed. This PR also updates the `remove_dir_all` docs to reflect that all supported macOS versions are protected against TOCTOU race conditions (the fallback implementation was already removed in #127683).
try-job: dist-x86_64-apple
try-job: dist-aarch64-apple
try-job: dist-apple-various
try-job: aarch64-apple
try-job: x86_64-apple-1
`pal::unsupported::process::ExitCode`: use an `u8` instead of a `bool`
`ExitCode` should “represents the status code the current process can return to its parent under normal termination”, but is currently represented as a `bool` on unsupported platforms, making the `impl From<u8> for ExitCode` lossy.
Fixes#130532.
History: [IRLO thread](https://internals.rust-lang.org/t/mini-pre-rfc-redesigning-process-exitstatus/5426) (`ExitCode` as a `main` return), #48618 (initial impl), #93445 (`From<u8>` impl).
Win: Open dir for sync access in remove_dir_all
A small follow up to #129800.
We should explicitly open directories for synchronous access. We ultimately use `GetFileInformationByHandleEx` to read directories which should paper over any issues caused by using async directory reads (or else return an error) but it's better to do the right thing in the first place. Note though that `delete` does not read or write any data so it's not necessary there.
In the implementation of `force_mut`, I chose performance over safety.
For `LazyLock` this isn't really a choice; the code has to be unsafe.
But for `LazyCell`, we can have a full-safe implementation, but it will
be a bit less performant, so I went with the unsafe approach.
fix: Remove duplicate `LazyLock` example.
The top-level docs for `LazyLock` included two lines of code, each with an accompanying comment, that were identical and with nearly- identical comments. This looks like an oversight from a past edit which was perhaps trying to rewrite an existing example but ended up duplicating rather than replacing, though I haven't gone back through the Git history to check.
This commit removes what I personally think is the less-clear of the two examples.
[library/std/src/process.rs] `PartialEq` for `ExitCode`
Converting a third-party CLI to a library so started passing around [`std::process::ExitCode`](https://doc.rust-lang.org/std/process/struct.ExitCode.html) in an `Either`. Then I realised the tests can't be modified to compare equality of `ExitCode`s.
This PR fixes this oversight.
The top-level docs for `LazyLock` included two lines of code, each
with an accompanying comment, that were identical and with nearly-
identical comments. This looks like an oversight from a past edit
which was perhaps trying to rewrite an existing example but ended
up duplicating rather than replacing, though I haven't gone back
through the Git history to check.
This commit removes what I personally think is the less-clear of
the two examples.
Signed-off-by: Andrew Lilley Brinker <alilleybrinker@gmail.com>
Add `core::panic::abort_unwind`
`abort_unwind` is like `catch_unwind` except that it aborts the process if it unwinds, using the `#[rustc_nounwind]` mechanism also used by `extern "C" fn` to abort unwinding. The docs attempt to make it clear when to (rarely) and when not to (usually) use the function.
Although usage of the function is discouraged, having it available will help to normalize the experience when abort_unwind shims are hit, as opposed to the current ecosystem where there exist multiple common patterns for converting unwinding into a process abort.
For further information and justification, see the linked ACP.
- Tracking issue: https://github.com/rust-lang/rust/issues/130338
- ACP: https://github.com/rust-lang/libs-team/issues/441
Stabilize `&mut` (and `*mut`) as well as `&Cell` (and `*const Cell`) in const
This stabilizes `const_mut_refs` and `const_refs_to_cell`. That allows a bunch of new things in const contexts:
- Mentioning `&mut` types
- Creating `&mut` and `*mut` values
- Creating `&T` and `*const T` values where `T` contains interior mutability
- Dereferencing `&mut` and `*mut` values (both for reads and writes)
The same rules as at runtime apply: mutating immutable data is UB. This includes mutation through pointers derived from shared references; the following is diagnosed with a hard error:
```rust
#[allow(invalid_reference_casting)]
const _: () = {
let mut val = 15;
let ptr = &val as *const i32 as *mut i32;
unsafe { *ptr = 16; }
};
```
The main limitation that is enforced is that the final value of a const (or non-`mut` static) may not contain `&mut` values nor interior mutable `&` values. This is necessary because the memory those references point to becomes *read-only* when the constant is done computing, so (interior) mutable references to such memory would be pretty dangerous. We take a multi-layered approach here to ensuring no mutable references escape the initializer expression:
- A static analysis rejects (interior) mutable references when the referee looks like it may outlive the current MIR body.
- To be extra sure, this static check is complemented by a "safety net" of dynamic checks. ("Dynamic" in the sense of "running during/after const-evaluation, e.g. at runtime of this code" -- in contrast to "static" which works entirely by looking at the MIR without evaluating it.)
- After the final value is computed, we do a type-driven traversal of the entire value, and if we find any `&mut` or interior-mutable `&` we error out.
- However, the type-driven traversal cannot traverse `union` or raw pointers, so there is a second dynamic check where if the final value of the const contains any pointer that was not derived from a shared reference, we complain. This is currently a future-compat lint, but will become an ICE in #128543. On the off-chance that it's actually possible to trigger this lint on stable, I'd prefer if we could make it an ICE before stabilizing const_mut_refs, but it's not a hard blocker. This part of the "safety net" is only active for mutable references since with shared references, it has false positives.
Altogether this should prevent people from leaking (interior) mutable references out of the const initializer.
While updating the tests I learned that surprisingly, this code gets rejected:
```rust
const _: Vec<i32> = {
let mut x = Vec::<i32>::new(); //~ ERROR destructor of `Vec<i32>` cannot be evaluated at compile-time
let r = &mut x;
let y = x;
y
};
```
The analysis that rejects destructors in `const` is very conservative when it sees an `&mut` being created to `x`, and then considers `x` to be always live. See [here](https://github.com/rust-lang/rust/issues/65394#issuecomment-541499219) for a longer explanation. `const_precise_live_drops` will solve this, so I consider this problem to be tracked by https://github.com/rust-lang/rust/issues/73255.
Cc `@rust-lang/wg-const-eval` `@rust-lang/lang`
Cc https://github.com/rust-lang/rust/issues/57349
Cc https://github.com/rust-lang/rust/issues/80384
some const cleanup: remove unnecessary attributes, add const-hack indications
I learned that we use `FIXME(const-hack)` on top of the "const-hack" label. That seems much better since it marks the right place in the code and moves around with the code. So I went through the PRs with that label and added appropriate FIXMEs in the code. IMO this means we can then remove the label -- Cc ``@rust-lang/wg-const-eval.``
I also noticed some const stability attributes that don't do anything useful, and removed them.
r? ``@fee1-dead``
Expand documentation of PathBuf, discussing lack of sanitization
Various methods in `PathBuf`, in particular `set_file_name` and `set_extension` accept strings which include path seperators (like `../../etc`). These methods just glue together strings, so you can end up with strange strings.
This isn't reasonable to change/fix at this point, and might not even be fixable, but I think should be documented. In particular, you probably shouldn't blindly build paths using strings given by possibly malicious users.
Limit `libc::link` usage to `nto70` target only, not NTO OS
It seems QNX 7.0 does not support `linkat` at all (most tests were failing). Limiting to QNX 7.0 only, while using `linkat` for the future versions seems like the right path forward (tested on 7.0).
Fixes#129895
CC: `@japaric` `@flba-eb` `@saethlin`
enable const-float-classify test, and test_next_up/down on 32bit x86
The test_next_up/down tests have been disabled on all 32bit x86 targets, which goes too far -- they should definitely work on our (tier 1) i686 target, it is only without SSE that we might run into trouble due to https://github.com/rust-lang/rust/issues/114479. However, I cannot reproduce that trouble any more -- maybe that got fixed by https://github.com/rust-lang/rust/pull/123351?
The const-float-classify test relied on const traits "because we can", and got disabled when const traits got removed. That's an unfortunate reduction in test coverage of our float functionality, so let's restore the test in a way that does not rely on const traits.
The const-float tests are actually testing runtime behavior as well, and I don't think that runtime behavior is covered anywhere else. Probably they shouldn't be called "const-float", but we don't have a `tests/ui/float` folder... should I create one and move them there? Are there any other ui tests that should be moved there?
I also removed some FIXME referring to not use x87 for Rust-to-Rust-calls -- that has happened in #123351 so this got fixed indeed. Does that mean we can simplify all that float code again? I am not sure how to test it. Is running the test suite with an i586 target enough?
Cc ```@tgross35``` ```@workingjubilee```
It seems QNX 7.0 does not support `linkat` at all (most tests were failing). Limiting to QNX 7.0 only, while using `linkat` for the future versions seems like the right path forward (tested on 7.0).
Fixes 129895
Map `ERROR_CANT_RESOLVE_FILENAME` to `ErrorKind::FilesystemLoop`
cc #86442
As summarized in #130188, there seems to be a consensus that this should be done.
Clarify documentation labelling and definitions for std::collections
Page affected: https://doc.rust-lang.org/std/collections/index.html#performance
Changes:
- bulleted conventions
- expanded definitions on terms used
- more accessible language
- more informative headings
Also emit `missing_docs` lint with `--test` to fulfil expectations
This PR removes the "test harness" suppression of the `missing_docs` lint to be able to fulfil `#[expect]` (expectations) as it is now "relevant".
I think the goal was to maybe avoid false-positive while linting on public items under `#[cfg(test)]` but with effective visibility we should no longer have any false-positive.
Another possibility would be to query the lint level and only emit the lint if it's of expect level, but that is even more hacky.
Fixes https://github.com/rust-lang/rust/issues/130021
try-job: x86_64-gnu-aux
[illumos] enable SIGSEGV handler to detect stack overflows
Use the same code as Solaris. I couldn't find any tests regarding this, but I did test a stage0 build against my stack-exhaust-test binary [1]. Before:
```
running with use_stacker = No, new_thread = false, make_large_local = false
zsh: segmentation fault (core dumped) cargo run
```
After:
```
running with use_stacker = No, new_thread = false, make_large_local = false
thread 'main' has overflowed its stack
fatal runtime error: stack overflow
zsh: IOT instruction (core dumped) cargo +stage0 run
```
Fixes#128568.
[1] https://github.com/sunshowers/stack-exhaust-test/
Stabilize most of `io_error_more`
Sadly, venting my frustration with t-libs-api is not a constructive way to solve problems and get things done, so I will try to stick to stuff that actually matters here.
- Tracking issue for this feature was opened 3 years ago: #86442
- FCP to stabilize it was completed 19(!!) months ago: https://github.com/rust-lang/rust/issues/86442#issuecomment-1368082102
- A PR with stabilization was similarly open for 19 months: #106375, but nothing ever came out of it. Presumably (it is hard to judge given the lack of communication) because a few of the variants still had some concerns voiced about them, even after the FCP.
So, to highlight a common sentiment:
> Maybe uncontroversial variants can be stabilised first and other variants (such as `QuotaExceeded` or `FilesystemLoop`) later? [^1]
[^1]: https://github.com/rust-lang/rust/issues/106375#issuecomment-1435762236
> I would like to voice support stabilization of the uncontroversial variants. This would get those variants to stable and focus the discussion around the more controversial ones. I don't see any particular reason that all of these must be stabilized at the same time. [...] [^2]
[^2]: https://github.com/rust-lang/rust/pull/106375#issuecomment-1742661555
> Maybe some less-controversial subset could be stabilized sooner? What’s blocking this issue from making progress? [^3]
[^3]: https://github.com/rust-lang/rust/issues/86442#issuecomment-1691187483 (got 30 upvotes btw) (and no response)
So this is exactly what this PR does. It stabilizes the non-controversial variants now, leaving just a few of them behind.
Namely, this PR stabilizes:
- `HostUnreachable`
- `NetworkUnreachable`
- `NetworkDown`
- `NotADirectory`
- `IsADirectory`
- `DirectoryNotEmpty`
- `ReadOnlyFilesystem`
- `StaleNetworkFileHandle`
- `StorageFull`
- `NotSeekable`
- `FileTooLarge`
- `ResourceBusy`
- `ExecutableFileBusy`
- `Deadlock`
- `TooManyLinks`
- `ArgumentListTooLong`
- `Unsupported`
This PR does not stabilize:
- `FilesystemLoop`
- `FilesystemQuotaExceeded`
- `CrossesDevices`
- `InvalidFilename`
Hopefully, this will allow us to move forward with this highly and long awaited addition to std, both allowing to still polish the less clear parts of it and not leading to stagnation.
r? joshtriplett
because they seem to be listed as a part of t-libs-api and were one of the most responsive persons previously
Remove redundant check in `symlink_hard_link` test
We support macOS 10.12 and above, so it now always uses `linkat`, and so the check is redundant.
This was missed in #126351.
``@rustbot`` label O-macos
Use the same code as Solaris. I couldn't find any tests regarding this, but I
did test a stage0 build against my stack-exhaust-test binary [1]. Before:
```
running with use_stacker = No, new_thread = false, make_large_local = false
zsh: segmentation fault (core dumped) cargo run
```
After:
```
running with use_stacker = No, new_thread = false, make_large_local = false
thread 'main' has overflowed its stack
fatal runtime error: stack overflow
zsh: IOT instruction (core dumped) cargo +stage0 run
```
Fixes#128568.
[1] https://github.com/sunshowers/stack-exhaust-test/
Break into the debugger (if attached) on panics (Windows, Linux, macOS, FreeBSD)
The developer experience for panics is to provide the backtrace and
exit the program. When running under debugger, that might be improved
by breaking into the debugger once the code panics thus enabling
the developer to examine the program state at the exact time when
the code panicked.
Let the developer catch the panic in the debugger if it is attached.
If the debugger is not attached, nothing changes. Providing this feature
inside the standard library facilitates better debugging experience.
Validated under Windows, Linux, macOS 14.6, and FreeBSD 13.3..14.1.
In https://github.com/rust-lang/rust/pull/124748, I mistakenly conflated
"not SjLj" to mean "ARM EHABI", which isn't true, watchOS armv7k
(specifically only that architecture) uses a third unwinding method
called "DWARF CFI".
Inaccurate `{Path,OsStr}::to_string_lossy()` documentation
The documentation of `Path::to_string_lossy()` and `OsStr::to_string_lossy()` says the following:
> Any non-Unicode sequences are replaced with `U+FFFD REPLACEMENT CHARACTER`
which didn't immediately make sense to me. ("non-Unicode sequences"?)
Since both `to_string_lossy` functions eventually become just a call to `String::from_utf8_lossy`, I believe the documentation meant to say:
> Any *non-UTF-8* sequences are replaced with `U+FFFD REPLACEMENT CHARACTER`
This PR corrects this mistake in the documentation.
For the record, a similar quote can be found in the documentation of `String::from_utf8_lossy`:
> ... During this conversion, `from_utf8_lossy()` will replace any invalid UTF-8 sequences with `U+FFFD REPLACEMENT CHARACTER`, ...
The developer experience for panics is to provide the backtrace and
exit the program. When running under debugger, that might be improved
by breaking into the debugger once the code panics thus enabling
the developer to examine the program state at the exact time when
the code panicked.
Let the developer catch the panic in the debugger if it is attached.
If the debugger is not attached, nothing changes. Providing this feature
inside the standard library facilitates better debugging experience.
Validated under Windows, Linux, macOS 14.6, and FreeBSD 13.3..14.1.
Add target support for RTEMS Arm
# `armv7-rtems-eabihf`
This PR adds a new target for the RTEMS RTOS. To get things started it focuses on Xilinx/AMD Zynq-based targets, but in theory it should also support other armv7-based board support packages in the future.
Given that RTEMS has support for many POSIX functions it is mostly enabling corresponding unix features for the new target.
I also previously started a PR in libc (https://github.com/rust-lang/libc/pull/3561) to add the needed OS specific C-bindings and was told that a PR in this repo is needed first. I will update the PR to the newest version after approval here.
I will probably also need to change one line in the backtrace repo.
Current status is that I could compile rustc for the new target locally (with the updated libc and backtrace) and could compile binaries, link, and execute a simple "Hello World" RTEMS application for the target hardware.
> A proposed target or target-specific patch that substantially changes code shared with other targets (not just target-specific code) must be reviewed and approved by the appropriate team for that shared code before acceptance.
There should be no breaking changes for existing targets. Main changes are adding corresponding `cfg` switches for the RTEMS OS and adding the C binding in libc.
# Tier 3 target policy
> - A tier 3 target must have a designated developer or developers (the "target maintainers") on record to be CCed when issues arise regarding the target. (The mechanism to track and CC such developers may evolve over time.)
I will do the maintenance (for now) further members of the RTEMS community will most likely join once the first steps have been done.
> - Targets must use naming consistent with any existing targets; for instance, a target for the same CPU or OS as an existing Rust target should use the same name for that CPU or OS. Targets should normally use the same names and naming conventions as used elsewhere in the broader ecosystem beyond Rust (such as in other toolchains), unless they have a very good reason to diverge. Changing the name of a target can be highly disruptive, especially once the target reaches a higher tier, so getting the name right is important even for a tier 3 target.
> - Target names should not introduce undue confusion or ambiguity unless absolutely necessary to maintain ecosystem compatibility. For example, if the name of the target makes people extremely likely to form incorrect beliefs about what it targets, the name should be changed or augmented to disambiguate it.
> - If possible, use only letters, numbers, dashes and underscores for the name. Periods (`.`) are known to cause issues in Cargo.
The proposed triple is `armv7-rtems-eabihf`
> - Tier 3 targets may have unusual requirements to build or use, but must not create legal issues or impose onerous legal terms for the Rust project or for Rust developers or users.
> - The target must not introduce license incompatibilities.
> - Anything added to the Rust repository must be under the standard Rust license (`MIT OR Apache-2.0`).
> - The target must not cause the Rust tools or libraries built for any other host (even when supporting cross-compilation to the target) to depend on any new dependency less permissive than the Rust licensing policy. This applies whether the dependency is a Rust crate that would require adding new license exceptions (as specified by the `tidy` tool in the rust-lang/rust repository), or whether the dependency is a native library or binary. In other words, the introduction of the target must not cause a user installing or running a version of Rust or the Rust tools to be subject to any new license requirements.
> - Compiling, linking, and emitting functional binaries, libraries, or other code for the target (whether hosted on the target itself or cross-compiling from another target) must not depend on proprietary (non-FOSS) libraries. Host tools built for the target itself may depend on the ordinary runtime libraries supplied by the platform and commonly used by other applications built for the target, but those libraries must not be required for code generation for the target; cross-compilation to the target must not require such libraries at all. For instance, `rustc` built for the target may depend on a common proprietary C runtime library or console output library, but must not depend on a proprietary code generation library or code optimization library. Rust's license permits such combinations, but the Rust project has no interest in maintaining such combinations within the scope of Rust itself, even at tier 3.
> - "onerous" here is an intentionally subjective term. At a minimum, "onerous" legal/licensing terms include but are _not_ limited to: non-disclosure requirements, non-compete requirements, contributor license agreements (CLAs) or equivalent, "non-commercial"/"research-only"/etc terms, requirements conditional on the employer or employment of any particular Rust developers, revocable terms, any requirements that create liability for the Rust project or its developers or users, or any requirements that adversely affect the livelihood or prospects of the Rust project or its developers or users.
The tools consists of the cross-compiler toolchain (gcc-based). The RTEMS kernel (BSD license) and parts of the driver stack of FreeBSD (BSD license). All tools are FOSS and publicly available here: https://gitlab.rtems.org/rtems
There are also no new features or dependencies introduced to the Rust code.
> - Neither this policy nor any decisions made regarding targets shall create any binding agreement or estoppel by any party. If any member of an approving Rust team serves as one of the maintainers of a target, or has any legal or employment requirement (explicit or implicit) that might affect their decisions regarding a target, they must recuse themselves from any approval decisions regarding the target's tier status, though they may otherwise participate in discussions.
N/A to me. I am not a reviewer nor Rust team member.
> - Tier 3 targets should attempt to implement as much of the standard libraries as possible and appropriate (`core` for most targets, `alloc` for targets that can support dynamic memory allocation, `std` for targets with an operating system or equivalent layer of system-provided functionality), but may leave some code unimplemented (either unavailable or stubbed out as appropriate), whether because the target makes it impossible to implement or challenging to implement. The authors of pull requests are not obligated to avoid calling any portions of the standard library on the basis of a tier 3 target not implementing those portions.
`core` and `std` compile. Some advanced features of the `std` lib might not work yet. However, the goal of this tier 3 target it to make it easier for other people to build and run test applications to better identify the unsupported features and work towards enabling them.
> - The target must provide documentation for the Rust community explaining how to build for the target, using cross-compilation if possible. If the target supports running binaries, or running tests (even if they do not pass), the documentation must explain how to run such binaries or tests for the target, using emulation if possible or dedicated hardware if necessary.
Building is described in platform support doc. Running simple unit tests works. Running the test suite of the stdlib is currently not that easy. Trying to work towards that after the this target has been added to the nightly.
> - Tier 3 targets must not impose burden on the authors of pull requests, or other developers in the community, to maintain the target. In particular, do not post comments (automated or manual) on a PR that derail or suggest a block on the PR based on a tier 3 target. Do not send automated messages or notifications (via any medium, including via ````@`)``` to a PR author or others involved with a PR regarding a tier 3 target, unless they have opted into such messages.
Understood.
> - Backlinks such as those generated by the issue/PR tracker when linking to an issue or PR are not considered a violation of this policy, within reason. However, such messages (even on a separate repository) must not generate notifications to anyone involved with a PR who has not requested such notifications.
Ok
> - Patches adding or updating tier 3 targets must not break any existing tier 2 or tier 1 target, and must not knowingly break another tier 3 target without approval of either the compiler team or the maintainers of the other tier 3 target.
> - In particular, this may come up when working on closely related targets, such as variations of the same architecture with different features. Avoid introducing unconditional uses of features that another variation of the target may not have; use conditional compilation or runtime detection, as appropriate, to let each target run code supported by that target.
I think, I didn't add any breaking changes for any existing targets (see the comment regarding features above).
> - Tier 3 targets must be able to produce assembly using at least one of rustc's supported backends from any host target.
Can produce assembly code via the llvm backend (tested on Linux).
>
> If a tier 3 target stops meeting these requirements, or the target maintainers no longer have interest or time, or the target shows no signs of activity and has not built for some time, or removing the target would improve the quality of the Rust codebase, we may post a PR to remove it; any such PR will be CCed to the target maintainers (and potentially other people who have previously worked on the target), to check potential interest in improving the situation.GIAt this tier, the Rust project provides no official support for a target, so we place minimal requirements on the introduction of targets.
Understood.
r? compiler-team
Add missing read_buf stub for x86_64-unknown-l4re-uclibc
Before this PR, `x check library/std --target x86_64-unknown-l4re-uclibc` will fail with
```
error[E0599]: no method named `read_buf` found for struct `Socket` in the current scope
--> std/src/os/unix/net/stream.rs:598:16
|
598 | self.0.read_buf(buf)
| ^^^^^^^^
|
::: std/src/sys/pal/unix/l4re.rs:23:5
|
23 | pub struct Socket(FileDesc);
| ----------------- method `read_buf` not found for this struct
|
= help: items from traits can only be used if the trait is implemented and in scope
```
This target doesn't have a maintainer to cc.
Move the Windows remove_dir_all impl into a module and make it more race resistant
This attempts to make the Windows implementation of `remove_dir_all` easier to understand and work with by separating out different concerns into their own functions. The code is mostly the same as before just moved around. There are some changes to make it more robust against races (e.g. two calls to `remove_dir_all` running concurrently). The module level comment explains the issue.
try-job: x86_64-msvc
try-job: i686-msvc
Fix compile error in solid's remove_dir_all
Before this PR, `x check library/std --target=aarch64-kmc-solid_asp3` will fail with:
```
error[E0382]: use of partially moved value: `result`
--> std/src/sys/pal/solid/fs.rs:544:20
|
541 | if let Err(err) = result
| --- value partially moved here
...
544 | return result;
| ^^^^^^ value used here after partial move
|
= note: partial move occurs because value has type `io::error::Error`, which does not implement the `Copy` trait
help: borrow this binding in the pattern to avoid moving the value
|
541 | if let Err(ref err) = result
| +++
```
cc `@kawadakk` I think this will clear up https://solid-rs.github.io/toolstate/ :)