implement ptr.addr() via transmute
As per the discussion in https://github.com/rust-lang/unsafe-code-guidelines/issues/286, the semantics for ptr-to-int transmutes that we are going with for now is to make them strip provenance without exposing it. That's exactly what `ptr.addr()` does! So we can implement `ptr.addr()` via `transmute`. This also means that once https://github.com/rust-lang/rust/pull/97684 lands, Miri can distinguish `ptr.addr()` from `ptr.expose_addr()`, and the following code will correctly be called out as having UB (if permissive provenance mode is enabled, which will become the default once the [implementation is complete](https://github.com/rust-lang/miri/issues/2133)):
```rust
fn main() {
let x: i32 = 3;
let x_ptr = &x as *const i32;
let x_usize: usize = x_ptr.addr();
// Cast back an address that did *not* get exposed.
let ptr = std::ptr::from_exposed_addr::<i32>(x_usize);
assert_eq!(unsafe { *ptr }, 3); //~ ERROR Undefined Behavior: dereferencing pointer failed
}
```
This completes the Miri implementation of the new distinctions introduced by strict provenance. :)
Cc `@Gankra` -- for now I left in your `FIXME(strict_provenance_magic)` saying these should be intrinsics, but I do not necessarily agree that they should be. Or if we have an intrinsic, I think it should behave exactly like the `transmute` does, which makes one wonder why the intrinsic should be needed.
Stabilize `{slice,array}::from_ref`
This PR stabilizes the following APIs as `const` functions in Rust `1.63`:
```rust
// core::array
pub const fn from_ref<T>(s: &T) -> &[T; 1];
// core::slice
pub const fn from_ref<T>(s: &T) -> &[T];
```
Note that the `mut` versions are not stabilized as unique references (`&mut _`) are [unstable in const context].
FCP: https://github.com/rust-lang/rust/issues/90206#issuecomment-1134586665
r? rust-lang/libs-api `@rustbot` label +T-libs-api -T-libs
[unstable in const context]: https://github.com/rust-lang/rust/issues/57349
Additional `*mut [T]` methods
Split out from #94247
This adds the following methods to raw slices that already exist on regular slices
* `*mut [T]::is_empty`
* `*mut [T]::split_at_mut`
* `*mut [T]::split_at_mut_unchecked`
These methods reduce the amount of unsafe code needed to migrate `ChunksMut` and related iterators
to raw slices (#94247)
r? `@m-ou-se`
Corrected EBNF grammar for from_str
Hello! This is my first time contributing to an open-source project. I'm excited to have the chance to contribute to the rust community 🥳
I noticed an issue with the documentation for `from_str` in `f32` and `f64`. It states that "All strings that adhere to the following [EBNF](https://www.w3.org/TR/REC-xml/#sec-notation) grammar when lowercased will result in an `Ok` being returned. I believe this is incorrect for the string `"."`, which is valid for the given EBNF grammar, but does not result in an `Ok` being returned ([playground](https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=09f891aa87963a56d3b0d715d8cbc2b4)). I have simplified the grammar in a way which fixes that, but is otherwise identical.
Previously, the `Number` part of the EBNF grammar had an option for `'.' Digit*`, which would include the string `"."`. This is not valid, and does not return an Ok as stated. The corrected version removes this, and still allows for the `'.' Digit+` case with the already existing `Digit* '.' Digit+` case.
Add unicode fast path to `is_printable`
Before, it would enter the full expensive check even for normal ascii characters. Now, it skips the check for the ascii characters in `32..127`. This range was checked manually from the current behavior.
I ran the `tracing` test suite in miri, and it was really slow. I looked at a profile, and miri spent most of the time in `core::char::methods::escape_debug_ext`, where half of that was dominated by `core::unicode::printable::is_printable`. So I optimized it here.
The tracing profile:
![The tracing profile](https://user-images.githubusercontent.com/48135649/170883650-23876e7b-3fd1-4e8b-9001-47672e06d914.svg)
Before, it would enter the full expensive check even for normal ascii
characters. Now, it skips the check for the ascii characters in
`32..127`. This range was checked manually from the current behavior.
Use Box::new() instead of box syntax in library tests
The tests inside `library/*` have no reason to use `box` syntax as they have 0 performance relevance. Therefore, we can safely remove them (instead of having to use alternatives like the one in #97293).
Replace `#[default_method_body_is_const]` with `#[const_trait]`
pulled out of #96077
related issues: #67792 and #92158
cc `@fee1-dead`
This is groundwork to only allowing `impl const Trait` for traits that are marked with `#[const_trait]`. This is necessary to prevent adding a new default method from becoming a breaking change (as it could be a non-const fn).
Finish bumping stage0
It looks like the last time had left some remaining cfg's -- which made me think
that the stage0 bump was actually successful. This brings us to a released 1.62
beta though.
This now brings us to cfg-clean, with the exception of check-cfg-features in bootstrap;
I'd prefer to leave that for a separate PR at this time since it's likely to be more tricky.
cc https://github.com/rust-lang/rust/pull/97147#issuecomment-1132845061
r? `@pietroalbini`
ptr::invalid is not equivalent to a int2ptr cast
I just realized I forgot to update these docs when adding `from_exposed_addr`.
Right now the docs say `invalid` and `from_exposed_addr` are both equivalent to a cast, and that is clearly not what we want.
Cc ``@Gankra``
Previously, the `Number` part of the EBNF grammar had an option for `'.' Digit*`, which would include the string "." (a single decimal point). This is not valid, and does not return an Ok as stated. The corrected version removes this, and still allows for the `'.' Digit+` case with the already existing `Digit* '.' Digit+` case.
Partially stabilize `(const_)slice_ptr_len` feature by stabilizing `NonNull::len`
This PR partially stabilizes features `const_slice_ptr_len` and `slice_ptr_len` by only stabilizing `NonNull::len`. This partial stabilization is tracked under features `slice_ptr_len_nonnull` and `const_slice_ptr_len_nonnull`, for which this PR can serve as the tracking issue.
To summarize the discussion from #71146 leading up to this partial stabilization request:
It's currently a bit footgunny to obtain the length of a raw slice pointer, stabilization of `NonNull:len` will help with removing these footguns. Some example footguns are:
```rust
/// # Safety
/// The caller must ensure that `ptr`:
/// 1. does not point to memory that was previously allocated but is now deallocated;
/// 2. is within the bounds of a single allocated object;
/// 3. does not to point to a slice for which the length exceeds `isize::MAX` bytes;
/// 4. points to a properly aligned address;
/// 5. does not point to uninitialized memory;
/// 6. does not point to a mutably borrowed memory location.
pub unsafe fn ptr_len<T>(ptr: core::ptr::NonNull<[T]>) -> usize {
(&*ptr.as_ptr()).len()
}
```
A slightly less complicated version (but still more complicated than it needs to be):
```rust
/// # Safety
/// The caller must ensure that the start of `ptr`:
/// 1. does not point to memory that was previously allocated but is now deallocated;
/// 2. must be within the bounds of a single allocated object.
pub unsafe fn ptr_len<T>(ptr: NonNull<[T]>) -> usize {
(&*(ptr.as_ptr() as *const [()])).len()
}
```
This PR does not stabilize `<*const [T]>::len` and `<*mut [T]>::len` because the tracking issue #71146 list a potential blocker for these methods, but this blocker [does not apply](https://github.com/rust-lang/rust/issues/71146#issuecomment-808735714) to `NonNull::len`.
We should probably also ping the [Constant Evaluation WG](https://github.com/rust-lang/const-eval) since this PR includes a `#[rustc_allow_const_fn_unstable(const_slice_ptr_len)]`. My instinct here is that this will probably be okay because the pointer is not actually dereferenced and `len()` does not touch the address component of the pointer, but would be best to double check :)
One potential down-side was raised that stabilizing `NonNull::len` could lead to encouragement of coding patterns like:
```
pub fn ptr_len<T>(ptr: *mut [T]) -> usize {
NonNull::new(ptr).unwrap().len()
}
```
which unnecessarily assert non-nullness. However, these are much less of a footgun than the above examples and this should be resolved when `slice_ptr_len` fully stabilizes eventually.
It looks like the last time had left some remaining cfg's -- which made me think
that the stage0 bump was actually successful. This brings us to a released 1.62
beta though.
Add section on common message styles for Result::expect
Based on a question from https://github.com/rust-lang/project-error-handling/issues/50#issuecomment-1092339937
~~One thing I haven't decided on yet, should I duplicate this section on `Option::expect`, link to this section, or move it somewhere else and link to that location from both docs?~~: I ended up moving the section to `std::error` and referencing it from both `Result::expect` and `Option::expect`'s docs.
I think this section, when combined with the similar update I made on [`std::panic!`](https://doc.rust-lang.org/nightly/std/macro.panic.html#when-to-use-panic-vs-result) implies that we should possibly more aggressively encourage and support the "expect as precondition" style described in this section. The consensus among the libs team seems to be that panic should be used for bugs, not expected potential failure modes. The "expect as error message" style seems to align better with the panic for unrecoverable errors style where they're seen as normal errors where the only difference is a desire to kill the current execution unit (aka erlang style error handling). I'm wondering if we should be providing a panic hook similar to `human-panic` or more strongly recommending the "expect as precondition" style of expect message.
Extend ptr::null and null_mut to all thin (including extern) types
Fixes https://github.com/rust-lang/rust/issues/93959
This change was accepted in https://rust-lang.github.io/rfcs/2580-ptr-meta.html
Note that this changes the signature of **stable** functions. The change should be backward-compatible, but it is **insta-stable** since it cannot (easily, at all?) be made available only through a `#![feature(…)]` opt-in.
The RFC also proposed the same change for `NonNull::dangling`, which makes sense it terms of its signature but not in terms of its implementation. `dangling` uses `align_of()` as an address. But what `align_of()` should be for extern types or whether it should be allowed at all remains an open question.
This commit depends on https://github.com/rust-lang/rust/pull/93977, which is not yet part of the bootstrap compiler. So `#[cfg]` is used to only apply the change in stage 1+. As far a I know bounds cannot be made conditional with `#[cfg]`, so the entire functions are duplicated. This is unfortunate but temporary.
Since this duplication makes it less obvious in the diff, the new definitions differ in:
* More permissive bounds (`Thin` instead of implied `Sized`)
* Different implementation
* Having `rustc_allow_const_fn_unstable(const_fn_trait_bound)`
* Having `rustc_allow_const_fn_unstable(ptr_metadata)`
[RFC 2011] Library code
CC https://github.com/rust-lang/rust/pull/96496
Based on https://github.com/dtolnay/case-studies/tree/master/autoref-specialization.
Basically creates two traits with the same method name. One trait is generic over any `T` and the other is specialized to any `T: Printable`.
The compiler will then call the corresponding trait method through auto reference.
```rust
fn main() {
let mut a = Capture::new();
let mut b = Capture::new();
(&Wrapper(&1i32)).try_capture(&mut a); // `try_capture` from `TryCapturePrintable`
(&Wrapper(&vec![1i32])).try_capture(&mut b); // `try_capture` from `TryCaptureGeneric`
assert_eq!(format!("{:?}", a), "1");
assert_eq!(format!("{:?}", b), "N/A");
}
```
r? `@scottmcm`
Change orderings of `Debug` for the Atomic types to `Relaxed`.
This reduces synchronization between threads when debugging the atomic types. Reducing the synchronization means that executions with and without the debug calls will be more consistent, making it easier to debug.
We discussed this on the Rust Community Discord with `@ibraheemdev` before.