Add `--print=check-cfg` to get the expected configs
This PR adds a new `--print` variant `check-cfg` to get the expected configs.
Details and rational can be found on the MCP: https://github.com/rust-lang/compiler-team/issues/743
``@rustbot`` label +F-check-cfg +S-waiting-on-MCP
r? ``@petrochenkov``
Remove many `#[macro_use] extern crate foo` items
This requires the addition of more `use` items, which often make the code more verbose. But they also make the code easier to read, because `#[macro_use]` obscures where macros are defined.
r? `@fee1-dead`
`-Z debug-macros` is "stabilized" by enabling it by default and removing.
`-Z collapse-macro-debuginfo` is stabilized as `-C collapse-macro-debuginfo`.
It now supports all typical boolean values (`parse_opt_bool`) in addition to just yes/no.
Default value of `collapse_debuginfo` was changed from `false` to `external` (i.e. collapsed if external, not collapsed if local).
`#[collapse_debuginfo]` attribute without a value is no longer supported to avoid guessing the default.
Improve diagnostic for unknown `--print` request
This PR improves the diagnostic when encountering a unknown `--print` request.
It also moves the run-make test to a simple UI test.
Enable `CrateNum` query feeding via `TyCtxt`
Instead of having a magic function that violates some `TyCtxtFeed` invariants, add a `create_def` equivalent for `CrateNum`s.
Note that this still isn't tracked by the query system (unlike `create_def`), and that feeding most `CrateNum` queries for crates other than the local one will likely cause performance regressions.
These things should be attempted on their own separately, but this PR should stand on its own
Implement Modified Condition/Decision Coverage
This is an implementation based on llvm backend support (>= 18) by `@evodius96` and branch coverage support by `@Zalathar.`
### Major changes:
* Add -Zcoverage-options=mcdc as switch. Now coverage options accept either `no-branch`, `branch`, or `mcdc`. `mcdc` also enables `branch` because it is essential to work.
* Add coverage mapping for MCDCBranch and MCDCDecision. Note that MCDCParameter evolves from llvm 18 to llvm 19. The mapping in rust side mainly references to 19 and is casted to 18 types in llvm wrapper.
* Add wrapper for mcdc instrinc functions from llvm. And inject associated statements to mir.
* Add BcbMappingKind::Decision, I'm not sure is it proper but can't find a better way temporarily.
* Let coverage-dump support parsing MCDCBranch and MCDCDecision from llvm ir.
* Add simple tests to check whether mcdc works.
* Same as clang, currently rustc does not generate instrument for decision with more than 6 condtions or only 1 condition due to considerations of resource.
### Implementation Details
1. To get information about conditions and decisions, `MCDCState` in `BranchInfoBuilder` is used during hir lowering to mir. For expressions with logical op we call `Builder::visit_coverage_branch_operation` to record its sub conditions, generate condition ids for them and save their spans (to construct the span of whole decision). This process mainly references to the implementation in clang and is described in comments over `MCDCState::record_conditions`. Also true marks and false marks introduced by branch coverage are used to detect where the decision evaluation ends: the next id of the condition == 0.
2. Once the `MCDCState::decision_stack` popped all recorded conditions, we can ensure that the decision is checked over and push it into `decision_spans`. We do not manually insert decision span to avoid complexity from then_else_break in nested if scopes.
3. When constructing CoverageSpans, add condition info to BcbMappingKind::Branch and decision info to BcbMappingKind::Decision. If the branch mapping has non-zero condition id it will be transformed to MCDCBranch mapping and insert `CondBitmapUpdate` statements to its evaluated blocks. While decision bcb mapping will insert `TestVectorBitmapUpdate` in all its end blocks.
### Usage
```bash
echo "[build]\nprofiler=true" >> config.toml
./x build --stage 1
./x test tests/coverage/mcdc_if.rs
```
to build the compiler and run tests.
```shell
export PATH=path/to/llvm-build:$PATH
rustup toolchain link mcdc build/host/stage1
cargo +mcdc rustc --bin foo -- -Cinstrument-coverage -Zcoverage-options=mcdc
cd target/debug
LLVM_PROFILE_FILE="foo.profraw" ./foo
llvm-profdata merge -sparse foo.profraw -o foo.profdata
llvm-cov show ./foo -instr-profile=foo.profdata --show-mcdc
```
to check "foo" code.
### Problems to solve
For now decision mapping will insert statements to its all end blocks, which may be optimized by inserting a final block of the decision. To do this we must also trace the evaluated value at each end of the decision and join them separately.
This implementation is not heavily tested so there should be some unrevealed issues. We are going to check our rust products in the next. Please let me know if you had any suggestions or comments.
Introduce perma-unstable `wasm-c-abi` flag
Now that `wasm-bindgen` v0.2.88 supports the spec-compliant C ABI, the idea is to switch to that in a future version of Rust. In the meantime it would be good to let people test and play around with it.
This PR introduces a new perma-unstable `-Zwasm-c-abi` compiler flag, which switches to the new spec-compliant C ABI when targeting `wasm32-unknown-unknown`.
Alternatively, we could also stabilize this and then deprecate it when we switch. I will leave this to the Rust maintainers to decide.
This is a companion PR to #117918, but they could be merged independently.
MCP: https://github.com/rust-lang/compiler-team/issues/703
Tracking issue: https://github.com/rust-lang/rust/issues/122532
Stabilize checking of cfgs at compile-time: `--check-cfg` option
This PR stabilize the `--check-cfg` CLI option of `rustc` (and `rustdoc`) 🎉.
In particular this PR does two things:
1. it makes the `--check-cfg` option stable
2. and it moves the documentation to the stable books
FCP: https://github.com/rust-lang/rust/issues/82450#issuecomment-1965328542Resolves#82450
``@rustbot`` labels +S-blocked +F-check-cfg
r? ``@petrochenkov``
Currently it's a method on `EarlyDiagCtxt`, which is not the right place
for it at all -- `EarlyDiagCtxt` is used to issue diagnostics, but
shouldn't be doing any of the actual checking.
This commit moves it into a standalone function that takes an
`EarlyDiagCtxt` as an argument, which is more sensible. This does
require adding `EarlyDiagCtxt::early_struct_warn`, so a warning can be
returned and then modified with a note. (And that likely explains why
somebody put `initialize_checked_jobserver` into `EarlyDiagCtxt` in the
first place.)
Currently `SourceMap` is constructed slightly later than
`SessionGlobals`, and inserted. This commit changes things so they are
done at the same time.
Benefits:
- `SessionGlobals::source_map` changes from
`Lock<Option<Lrc<SourceMap>>>` to `Option<Lrc<SourceMap>>`. It's still
optional, but mutability isn't required because it's initialized at
construction.
- `set_source_map` is removed, simplifying `run_compiler`, which is
good because that's a critical function and it's nice to make it
simpler.
This requires moving things around a bit, so the necessary inputs are
available when `SessionGlobals` is created, in particular the `loader`
and `hash_kind`, which are no longer computed by `build_session`. These
inputs are captured by the new `SourceMapInputs` type, which is threaded
through various places.
Linker flavors next steps: linker features
This is my understanding of the first step towards `@petrochenkov's` vision for the future of linker flavors, described in https://github.com/rust-lang/rust/pull/119906#issuecomment-1895693162 and the discussion that followed.
To summarize: having `Cc` and `Lld` embedded in linker flavors creates tension about naming, and a combinatorial explosion of flavors for each new linker feature we'd want to use. Linker features are an extension mechanism that is complementary to principal flavors, with benefits described in #119906.
The most immediate use of this flag would be to turn self-contained linking on and off via features instead of flavors. For example, `-Clinker-features=+/-lld` would toggle using lld instead of selecting a precise flavor, and would be "generic" and work cross-platform (whereas linker flavors are currently more tied to targets). Under this scheme, MCP510 is expected to be `-Clink-self-contained=+linker -Zlinker-features=+lld -Zunstable-options` (though for the time being, the original flags using lld-cc flavors still work).
I purposefully didn't add or document CLI support for `+/-cc`, as it would be a noop right now. I only expect that we'd initially want to stabilize `+/-lld` to begin with.
r? `@petrochenkov`
You had requested that minimal churn would be done to the 230 target specs and this does none yet: the linker features are inferred from the flavor since they're currently isomorphic. We of course expect this to change sooner rather than later.
In the future, we can allow targets to define linker features independently from their flavor, and remove the cc and lld components from the flavors to use the features instead, this actually doesn't need to block stabilization, as we discussed.
(Best reviewed per commit)
Replace some `CrateStore` trait methods with hooks.
Just like with the `CrateStore` trait, this avoids the cyclic definition issues with `CStore` being
defined after TyCtxt, but needing to be used in TyCtxt.
KCFI: Require -C panic=abort
While the KCFI scheme is not incompatible with unwinding, LLVM's `invoke` instruction does not currently support KCFI bundles. While it likely will in the near future, we won't be able to assume that in Rust for a while.
We encountered this problem while [turning on closure support](https://github.com/rust-lang/rust/pull/123106#issuecomment-2027436640).
r? ``@workingjubilee``
While the KCFI scheme is not incompatible with unwinding, LLVM's
`invoke` instruction does not currently support KCFI bundles. While it
likely will in the near future, we won't be able to assume that in Rust
for a while.
Rollup of 4 pull requests
Successful merges:
- #123176 (Normalize the result of `Fields::ty_with_args`)
- #123186 (copy any file from stage0/lib to stage0-sysroot/lib)
- #123187 (Forward port 1.77.1 release notes)
- #123188 (compiler: fix few unused_peekable and needless_pass_by_ref_mut clippy lints)
r? `@ghost`
`@rustbot` modify labels: rollup
warning: this argument is a mutable reference, but not used mutably
--> compiler\rustc_session\src\config.rs:2013:16
|
2013 | early_dcx: &mut EarlyDiagCtxt,
| ^^^^^^^^^^^^^^^^^^ help: consider changing to: `&EarlyDiagCtxt`
|
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#needless_pass_by_ref_mut
warning: this argument is a mutable reference, but not used mutably
--> compiler\rustc_ast_passes\src\ast_validation.rs:1555:11
|
1555 | this: &mut AstValidator<'_>,
| ^^^^^^^^^^^^^^^^^^^^^ help: consider changing to: `&AstValidator<'_>`
|
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#needless_pass_by_ref_mut
warning: this argument is a mutable reference, but not used mutably
--> compiler\rustc_infer\src\infer\snapshot\fudge.rs:16:12
|
16 | table: &mut UnificationTable<'_, 'tcx, T>,
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ help: consider changing to: `&UnificationTable<'_, 'tcx, T>`
|
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#needless_pass_by_ref_mut
warning: this argument is a mutable reference, but not used mutably
--> compiler\rustc_expand\src\expand.rs:961:13
|
961 | parser: &mut Parser<'a>,
| ^^^^^^^^^^^^^^^ help: consider changing to: `&Parser<'a>`
|
= warning: changing this function will impact semver compatibility
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#needless_pass_by_ref_mut
warning: this argument is a mutable reference, but not used mutably
--> compiler\rustc_session\src\config.rs:2111:20
|
2111 | unstable_opts: &mut UnstableOptions,
| ^^^^^^^^^^^^^^^^^^^^ help: consider changing to: `&UnstableOptions`
|
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#needless_pass_by_ref_mut
warning: `peek` never called on `Peekable` iterator
--> compiler\rustc_session\src\utils.rs:130:13
|
130 | let mut args = std::env::args_os().map(|arg| arg.to_string_lossy().to_string()).peekable();
| ^^^^
|
= help: consider removing the call to `peekable`
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#unused_peekable
warning: `peek` never called on `Peekable` iterator
--> compiler\rustc_trait_selection\src\traits\error_reporting\suggestions.rs:4934:17
|
4934 | let mut bounds = pred.bounds.iter().peekable();
| ^^^^^^
|
= help: consider removing the call to `peekable`
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#unused_peekable
Don't emit an error about failing to produce a file with a specific name if user never gave an explicit name
Fixes#122509
You can ask `rustc` to produce some intermediate results with `--emit foo`, this operation comes in two flavors: `--emit asm` and `--emit asm=foo.s`. First one produces one or more `.s` files without any name guarantees, second one renames it into `foo.s`. Second version only works when compiler produces a single file - for asm files this means using a single compilation unit for example.
In case compilation produced more than a single file `rustc` runs following check to emit some warnings:
```rust
if crate_output.outputs.contains_key(&output_type) {
// 2) Multiple codegen units, with `--emit foo=some_name`. We have
// no good solution for this case, so warn the user.
sess.dcx().emit_warn(errors::IgnoringEmitPath { extension });
} else if crate_output.single_output_file.is_some() {
// 3) Multiple codegen units, with `-o some_name`. We have
// no good solution for this case, so warn the user.
sess.dcx().emit_warn(errors::IgnoringOutput { extension });
} else {
// 4) Multiple codegen units, but no explicit name. We
// just leave the `foo.0.x` files in place.
// (We don't have to do any work in this case.)
}
```
Comment in the final `else` branch implies that if user didn't ask for a specific name - there's no need to emit warnings. However because of the internal representation of `crate_output.outputs` - this doesn't work as expected: if user asked to produce an asm file without giving it an implicit name it will contain `Some(None)`.
To fix the problem new code actually checks if user gave an explicit name. I think this was an original intentional behavior, at least comments imply that.
conditionally ignore fatal diagnostic in the SilentEmitter
This change is primarily meant to allow rustfmt to ignore all diagnostics when using the `SilentEmitter`. Back in #121301 the `SilentEmitter` was shared between rustc and rustfmt. This changed rustfmt's behavior from ignoring all diagnostic to emitting fatal diagnostics, which lead to https://github.com/rust-lang/rustfmt/issues/6109.
These changes allow rustfmt to maintain its previous behaviour when using the `SilentEmitter`, while allowing rustc code to still emit fatal diagnostics.
This should assist comprehending the size of coroutines.
In particular, whenever a future is suspended while awaiting another
future, the latter is given the special name `__awaitee`, and now the
type of the awaited future will be printed, allowing identifying
caller/callee — er, I mean, poller/pollee — relationships.
It would be possible to include the type name in more cases, but I
thought that that might be overly verbose (`print-type-sizes` is already
a lot of text) and ordinary named fields or variables are easier for
readers to discover the types of.
Backend and target selection is a mess: the target can override the
backend (via `Target::default_codegen_backend`), *and* the backend can
override the target (via `CodegenBackend::target_override`).
The code that handles this is ugly. It calls `build_target_config`
twice, once before getting the backend and once again afterward. It also
must check that both overrides aren't triggering at the same time.
This commit removes the latter override. It's used in rust-gpu but
@eddyb said via Zulip that removing it would be ok. This simplifies the
code greatly, and will allow some nice follow-up refactorings.
This change is primarily meant to allow rustfmt to ignore all
diagnostics when using the `SilentEmitter`. Back in PR 121301 the
`SilentEmitter` was shared between rustc and rustfmt. This changed
rustfmt's behavior from ignoring all diagnostic to emitting fatal
diagnostics.
These changes allow rustfmt to maintain it's previous behaviour when
using the SilentEmitter, while allowing rustc code to still emit fatal
diagnostics.
Provide structured suggestion for `#![feature(foo)]`
```
error: `S2<'_>` is forbidden as the type of a const generic parameter
--> $DIR/lifetime-in-const-param.rs:5:23
|
LL | struct S<'a, const N: S2>(&'a ());
| ^^
|
= note: the only supported types are integers, `bool` and `char`
help: add `#![feature(adt_const_params)]` to the crate attributes to enable more complex and user defined types
|
LL + #![feature(adt_const_params)]
|
```
Fix#55941.
```
error: `S2<'_>` is forbidden as the type of a const generic parameter
--> $DIR/lifetime-in-const-param.rs:5:23
|
LL | struct S<'a, const N: S2>(&'a ());
| ^^
|
= note: the only supported types are integers, `bool` and `char`
help: add `#![feature(adt_const_params)]` to the crate attributes to enable more complex and user defined types
|
LL + #![feature(adt_const_params)]
|
```
Fix#55941.
Add `-Z external-clangrt`
This adds the unstable `-Z external-clangrt` flag that will prevent rustc from emitting linker paths for the in-tree LLVM sanitizer runtime library.
coverage: Initial support for branch coverage instrumentation
(This is a review-ready version of the changes that were drafted in #118305.)
This PR adds support for branch coverage instrumentation, gated behind the unstable flag value `-Zcoverage-options=branch`. (Coverage instrumentation must also be enabled with `-Cinstrument-coverage`.)
During THIR-to-MIR lowering (MIR building), if branch coverage is enabled, we collect additional information about branch conditions and their corresponding then/else blocks. We inject special marker statements into those blocks, so that the `InstrumentCoverage` MIR pass can reliably identify them even after the initially-built MIR has been simplified and renumbered.
The rest of the changes are mostly just plumbing needed to gather up the information that was collected during MIR building, and include it in the coverage metadata that we embed in the final binary.
Note that `llvm-cov show` doesn't print branch coverage information in its source views by default; that needs to be explicitly enabled with `--show-branches=count` or similar.
---
The current implementation doesn't have any support for instrumenting `if let` or let-chains. I think it's still useful without that, and adding it would be non-trivial, so I'm happy to leave that for future work.
Make incremental sessions identity no longer depend on the crate names provided by source code
This makes incremental sessions identity no longer depend on the crate names provided by source code, implementing
https://github.com/rust-lang/compiler-team/issues/726.
r? ````@oli-obk````
This adds the unstable `-Z external-sanitizer-runtime` flag that will
prevent rustc from emitting linker paths for the in-tree LLVM sanitizer
runtime library.
coverage: Remove or migrate all unstable values of `-Cinstrument-coverage`
(This PR was substantially overhauled from its original version, which migrated all of the existing unstable values intact.)
This PR takes the three nightly-only values that are currently accepted by `-Cinstrument-coverage`, completely removes two of them (`except-unused-functions` and `except-unused-generics`), and migrates the third (`branch`) over to a newly-introduced unstable flag `-Zcoverage-options`.
I have a few motivations for wanting to do this:
- It's unclear whether anyone actually uses the `except-unused-*` values, so this serves as an opportunity to either remove them, or prompt existing users to object to their removal.
- After #117199, the stable values of `-Cinstrument-coverage` treat it as a boolean-valued flag, so having nightly-only extra values feels out-of-place.
- Nightly-only values also require extra ad-hoc code to make sure they aren't accidentally exposed to stable users.
- The new system allows multiple different settings to be toggled independently, which isn't possible in the current single-value system.
- The new system makes it easier to introduce new behaviour behind an unstable toggle, and then gather nightly-user feedback before possibly making it the default behaviour for all users.
- The new system also gives us a convenient place to put relatively-narrow options that won't ever be the default, but that nightly users might still want access to.
- It's likely that we will eventually want to give stable users more fine-grained control over coverage instrumentation. The new flag serves as a prototype of what that stable UI might eventually look like.
The `branch` option is a placeholder that currently does nothing. It will be used by #122322 to opt into branch coverage instrumentation.
---
I see `-Zcoverage-options` as something that will exist more-or-less indefinitely, though individual sub-options might come and go as appropriate. I think there will always be some demand for nightly-only toggles, so I don't see `-Zcoverage-options` itself ever being stable, though we might eventually stabilize something similar to it.
Verify that query keys result in unique dep nodes
This implements checking that query keys result into unique dep nodes as mentioned in https://github.com/rust-lang/rust/pull/112469.
We could do a perf check to see how expensive this is.
r? `@michaelwoerister`
This new nightly-only flag can be used to toggle fine-grained flags that
control the details of coverage instrumentation.
Currently the only supported flag value is `branch` (or `no-branch`), which is
a placeholder for upcoming support for branch coverage. Other flag values can
be added in the future, to prototype proposed new behaviour, or to enable
special non-default behaviour.
Removing absolute path in proc-macro
With rust 1.75 the absolute build path name is embedding into proc-macro (.rustc section) and which causes reproducibility issues.
Detailed issue description is here - https://github.com/rust-lang/rust/issues/120825#issuecomment-1964307219
With this change the 'absolute path' changed back to '/rust/$hash' format as in earlier revisions.
Rework `untranslatable_diagnostic` lint
Currently it only checks calls to functions marked with `#[rustc_lint_diagnostics]`. This PR changes it to check calls to any function with an `impl Into<{D,Subd}iagnosticMessage>` parameter. This greatly improves its coverage and doesn't rely on people remembering to add `#[rustc_lint_diagnostics]`. It also lets us add `#[rustc_lint_diagnostics]` to a number of functions that don't have an `impl Into<{D,Subd}iagnosticMessage>`, such as `Diag::span`.
r? ``@davidtwco``
Prior to the previous commit, `#[rust_lint_diagnostics]` attributes
could only be used on methods with an `impl Into<{D,Subd}iagMessage>`
parameter. But there are many other nearby diagnostic methods (e.g.
`Diag::span`) that don't take such a parameter and should have the
attribute.
This commit adds the missing attribute to these `Diag` methods. This
requires adding some missing
`#[allow(rustc::diagnostic_outside_of_impl)]` markers at call sites to
these methods.
Currently it only checks calls to functions marked with
`#[rustc_lint_diagnostics]`. This commit changes it to check calls to
any function with an `impl Into<{D,Subd}iagMessage>` parameter. This
greatly improves its coverage and doesn't rely on people remembering to
add `#[rustc_lint_diagnostics]`.
The commit also adds `#[allow(rustc::untranslatable_diagnostic)`]
attributes to places that need it that are caught by the improved lint.
These places that might be easy to convert to translatable diagnostics.
Finally, it also:
- Expands and corrects some comments.
- Does some minor formatting improvements.
- Adds missing `DecorateLint` cases to
`tests/ui-fulldeps/internal-lints/diagnostics.rs`.
errors: share `SilentEmitter` between rustc and rustfmt
Fixesrust-lang/rustfmt#6082.
Shares the `SilentEmitter` between rustc and rustfmt, and gives it a fallback bundle (since it can emit diagnostics in some contexts).
Existing names for values of this type are `sess`, `parse_sess`,
`parse_session`, and `ps`. `sess` is particularly annoying because
that's also used for `Session` values, which are often co-located, and
it can be difficult to know which type a value named `sess` refers to.
(That annoyance is the main motivation for this change.) `psess` is nice
and short, which is good for a name used this much.
The commit also renames some `parse_sess_created` values as
`psess_created`.
With rust 1.75 the absolute build path is embedding into '.rustc' section and which causes reproducibility issues. Detailed issue is here.
https://github.com/rust-lang/rust/issues/120825#issuecomment-1964307219
With this change the 'absolute path' changed back to '/rust/$hash' format.
Adds initial support for DataFlowSanitizer to the Rust compiler. It
currently supports `-Zsanitizer-dataflow-abilist`. Additional options
for it can be passed to LLVM command line argument processor via LLVM
arguments using `llvm-args` codegen option (e.g.,
`-Cllvm-args=-dfsan-combine-pointer-labels-on-load=false`).
Emitter cleanups
Some cleanups I made when reading emitter code. In particular, `HumanEmitter` and `JsonEmitter` have gone from three constructors to one.
r? `@oli-obk`
Stashed errors used to be counted as errors, but could then be
cancelled, leading to `ErrorGuaranteed` soundness holes. #120828 changed
that, closing the soundness hole. But it introduced other difficulties
because you sometimes have to account for pending stashed errors when
making decisions about whether errors have occured/will occur and it's
easy to overlook these.
This commit aims for a middle ground.
- Stashed errors (not warnings) are counted immediately as emitted
errors, avoiding the possibility of forgetting to consider them.
- The ability to cancel (or downgrade) stashed errors is eliminated, by
disallowing the use of `steal_diagnostic` with errors, and introducing
the more restrictive methods `try_steal_{modify,replace}_and_emit_err`
that can be used instead.
Other things:
- `DiagnosticBuilder::stash` and `DiagCtxt::stash_diagnostic` now both
return `Option<ErrorGuaranteed>`, which enables the removal of two
`delayed_bug` calls and one `Ty::new_error_with_message` call. This is
possible because we store error guarantees in
`DiagCtxt::stashed_diagnostics`.
- Storing the guarantees also saves us having to maintain a counter.
- Calls to the `stashed_err_count` method are no longer necessary
alongside calls to `has_errors`, which is a nice simplification, and
eliminates two more `span_delayed_bug` calls and one FIXME comment.
- Tests are added for three of the four fixed PRs mentioned below.
- `issue-121108.rs`'s output improved slightly, omitting a non-useful
error message.
Fixes#121451.
Fixes#121477.
Fixes#121504.
Fixes#121508.
PR #119097 made the decision to make all `IntoDiagnostic` impls generic,
because this allowed a bunch of nice cleanups. But four hand-written
impls were unintentionally overlooked. This commit makes them generic.
Currently `emit_stashed_diagnostic` is called from four(!) different
places: `print_error_count`, `DiagCtxtInner::drop`, `abort_if_errors`,
and `compile_status`.
And `flush_delayed` is called from two different places:
`DiagCtxtInner::drop` and `Queries`.
This is pretty gross! Each one should really be called from a single
place, but there's a bunch of entanglements. This commit cleans up this
mess.
Specifically, it:
- Removes all the existing calls to `emit_stashed_diagnostic`, and adds
a single new call in `finish_diagnostics`.
- Removes the early `flush_delayed` call in `codegen_and_build_linker`,
replacing it with a simple early return if delayed bugs are present.
- Changes `DiagCtxtInner::drop` and `DiagCtxtInner::flush_delayed` so
they both assert that the stashed diagnostics are empty (i.e.
processed beforehand).
- Changes `interface::run_compiler` so that any errors emitted during
`finish_diagnostics` (i.e. late-emitted stashed diagnostics) are
counted and cannot be overlooked. This requires adding
`ErrorGuaranteed` return values to several functions.
- Removes the `stashed_err_count` call in `analysis`. This is possible
now that we don't have to worry about calling `flush_delayed` early
from `codegen_and_build_linker` when stashed diagnostics are pending.
- Changes the `span_bug` case in `handle_tuple_field_pattern_match` to a
`delayed_span_bug`, because it now can be reached due to the removal
of the `stashed_err_count` call in `analysis`.
- Slightly changes the expected output of three tests. If no errors are
emitted but there are delayed bugs, the error count is no longer
printed. This is because delayed bugs are now always printed after the
error count is printed (or not printed, if the error count is zero).
There is a lot going on in this commit. It's hard to break into smaller
pieces because the existing code is very tangled. It took me a long time
and a lot of effort to understand how the different pieces interact, and
I think the new code is a lot simpler and easier to understand.
Currently `has_errors` excludes lint errors. This commit changes it to
include lint errors.
The motivation for this is that for most places it doesn't matter
whether lint errors are included or not. But there are multiple places
where they must be includes, and only one place where they must not be
included. So it makes sense for `has_errors` to do the thing that fits
the most situations, and the new `has_errors_excluding_lint_errors`
method in the one exceptional place.
The same change is made for `err_count`. Annoyingly, this requires the
introduction of `err_count_excluding_lint_errs` for one place, to
preserve existing error printing behaviour. But I still think the change
is worthwhile overall.
rustc_codegen_llvm: add support for writing summary bitcode
Typical uses of ThinLTO don't have any use for this as a standalone file, but distributed ThinLTO uses this to make the linker phase more efficient. With clang you'd do something like `clang -flto=thin -fthin-link-bitcode=foo.indexing.o -c foo.c` and then get both foo.o (full of bitcode) and foo.indexing.o (just the summary or index part of the bitcode). That's then usable by a two-stage linking process that's more friendly to distributed build systems like bazel, which is why I'm working on this area.
I talked some to `@teresajohnson` about naming in this area, as things seem to be a little confused between various blog posts and build systems. "bitcode index" and "bitcode summary" tend to be a little too ambiguous, and she tends to use "thin link bitcode" and "minimized bitcode" (which matches the descriptions in LLVM). Since the clang option is thin-link-bitcode, I went with that to try and not add a new spelling in the world.
Per `@dtolnay,` you can work around the lack of this by using `lld --thinlto-index-only` to do the indexing on regular .o files of bitcode, but that is a bit wasteful on actions when we already have all the information in rustc and could just write out the matching minimized bitcode. I didn't test that at all in our infrastructure, because by the time I learned that I already had this patch largely written.
rust-lld: fallback to rustc's sysroot if there's no path to the linker in the target sysroot
As seen in #125246, some sysroots don't expect to contain `rust-lld` and want to keep it that way, so we fallback to the default rustc sysroot if there is no path to the linker in any of the sysroot tools search paths. This is how we locate codegen-backends' dylibs already.
People also have requested an error if none of these search paths contain the self-contained linker directory, so there's also an error in that case.
r? `@petrochenkov` cc `@ehuss` `@RalfJung`
I'm not sure where we check for `rust-lld`'s existence on the targets where we use it by default, and if we just ignore it when missing or emit a warning (as I assume we don't emit an error), so I just checked for the existence of `gcc-ld`, where `cc` will look for the lld-wrapper binaries.
<sub>*Feel free to point out better ways to do this, it's the middle of the night here.*</sub>
Fixes#125246
Typical uses of ThinLTO don't have any use for this as a standalone
file, but distributed ThinLTO uses this to make the linker phase more
efficient. With clang you'd do something like `clang -flto=thin
-fthin-link-bitcode=foo.indexing.o -c foo.c` and then get both foo.o
(full of bitcode) and foo.indexing.o (just the summary or index part of
the bitcode). That's then usable by a two-stage linking process that's
more friendly to distributed build systems like bazel, which is why I'm
working on this area.
I talked some to @teresajohnson about naming in this area, as things
seem to be a little confused between various blog posts and build
systems. "bitcode index" and "bitcode summary" tend to be a little too
ambiguous, and she tends to use "thin link bitcode" and "minimized
bitcode" (which matches the descriptions in LLVM). Since the clang
option is thin-link-bitcode, I went with that to try and not add a new
spelling in the world.
Per @dtolnay, you can work around the lack of this by using `lld
--thinlto-index-only` to do the indexing on regular .o files of
bitcode, but that is a bit wasteful on actions when we already have all
the information in rustc and could just write out the matching minimized
bitcode. I didn't test that at all in our infrastructure, because by the
time I learned that I already had this patch largely written.
Translation of the lint message happens when the actual diagnostic is
created, not when the lint is buffered. Generating the message from
BuiltinLintDiag ensures that all required data to construct the message
is preserved in the LintBuffer, eventually allowing the messages to be
moved to fluent.
Remove the `msg` field from BufferedEarlyLint, it is either generated
from the data in the BuiltinLintDiag or stored inside
BuiltinLintDiag::Normal.
Relax restrictions on multiple sanitizers
Most combinations of LLVM sanitizers are legal-enough to enable simultaneously. This change will allow simultaneously enabling ASAN and shadow call stacks on supported platforms.
I used this python script to generate the mutually-exclusive sanitizer combinations:
```python
#!/usr/bin/python3
import subprocess
flags = [
["-fsanitize=address"],
["-fsanitize=leak"],
["-fsanitize=memory"],
["-fsanitize=thread"],
["-fsanitize=hwaddress"],
["-fsanitize=cfi", "-flto", "-fvisibility=hidden"],
["-fsanitize=memtag", "--target=aarch64-linux-android", "-march=armv8a+memtag"],
["-fsanitize=shadow-call-stack"],
["-fsanitize=kcfi", "-flto", "-fvisibility=hidden"],
["-fsanitize=kernel-address"],
["-fsanitize=safe-stack"],
["-fsanitize=dataflow"],
]
for i in range(len(flags)):
for j in range(i):
command = ["clang++"] + flags[i] + flags[j] + ["-o", "main.o", "-c", "main.cpp"]
completed = subprocess.run(command, stderr=subprocess.DEVNULL)
if completed.returncode != 0:
first = flags[i][0][11:].replace('-', '').upper()
second = flags[j][0][11:].replace('-', '').upper()
print(f"(SanitizerSet::{first}, SanitizerSet::{second}),")
```
Most combinations of LLVM sanitizers are legal-enough to enable
simultaneously. This change will allow simultaneously enabling ASAN and
shadow call stacks on supported platforms.
Change `SIGPIPE` ui from `#[unix_sigpipe = "..."]` to `-Zon-broken-pipe=...`
In the stabilization [attempt](https://github.com/rust-lang/rust/pull/120832) of `#[unix_sigpipe = "sig_dfl"]`, a concern was [raised ](https://github.com/rust-lang/rust/pull/120832#issuecomment-2007394609) related to using a language attribute for the feature: Long term, we want `fn lang_start()` to be definable by any crate, not just libstd. Having a special language attribute in that case becomes awkward.
So as a first step towards the next stabilization attempt, this PR changes the `#[unix_sigpipe = "..."]` attribute to a compiler flag `-Zon-broken-pipe=...` to remove that concern, since now the language is not "contaminated" by this feature.
Another point was [also raised](https://github.com/rust-lang/rust/pull/120832#issuecomment-1987023484), namely that the ui should not leak **how** it does things, but rather what the **end effect** is. The new flag uses the proposed naming. This is of course something that can be iterated on further before stabilization.
Tracking issue: https://github.com/rust-lang/rust/issues/97889
In the stabilization attempt of `#[unix_sigpipe = "sig_dfl"]`, a concern
was raised related to using a language attribute for the feature: Long
term, we want `fn lang_start()` to be definable by any crate, not just
libstd. Having a special language attribute in that case becomes
awkward.
So as a first step towards towards the next stabilization attempt, this
PR changes the `#[unix_sigpipe = "..."]` attribute to a compiler flag
`-Zon-broken-pipe=...` to remove that concern, since now the language
is not "contaminated" by this feature.
Another point was also raised, namely that the ui should not leak
**how** it does things, but rather what the **end effect** is. The new
flag uses the proposed naming. This is of course something that can be
iterated on further before stabilization.
Overhaul `Diagnostic` and `DiagnosticBuilder`
Implements the first part of https://github.com/rust-lang/compiler-team/issues/722, which moves functionality and use away from `Diagnostic`, onto `DiagnosticBuilder`.
Likely follow-ups:
- Move things around, because this PR was written to minimize diff size, so some things end up in sub-optimal places. E.g. `DiagnosticBuilder` has impls in both `diagnostic.rs` and `diagnostic_builder.rs`.
- Rename `Diagnostic` as `DiagInner` and `DiagnosticBuilder` as `Diag`.
r? `@davidtwco`
Currently many diagnostic modifier methods are available on both
`Diagnostic` and `DiagnosticBuilder`. This commit removes most of them
from `Diagnostic`. To minimize the diff size, it keeps them within
`diagnostic.rs` but changes the surrounding `impl Diagnostic` block to
`impl DiagnosticBuilder`. (I intend to move things around later, to give
a more sensible code layout.)
`Diagnostic` keeps a few methods that it still needs, like `sub`,
`arg`, and `replace_args`.
The `forward!` macro, which defined two additional methods per call
(e.g. `note` and `with_note`), is replaced by the `with_fn!` macro,
which defines one additional method per call (e.g. `with_note`). It's
now also only used when necessary -- not all modifier methods currently
need a `with_*` form. (New ones can be easily added as necessary.)
All this also requires changing `trait AddToDiagnostic` so its methods
take `DiagnosticBuilder` instead of `Diagnostic`, which leads to many
mechanical changes. `SubdiagnosticMessageOp` gains a type parameter `G`.
There are three subdiagnostics -- `DelayedAtWithoutNewline`,
`DelayedAtWithNewline`, and `InvalidFlushedDelayedDiagnosticLevel` --
that are created within the diagnostics machinery and appended to
external diagnostics. These are handled at the `Diagnostic` level, which
means it's now hard to construct them via `derive(Diagnostic)`, so
instead we construct them by hand. This has no effect on what they look
like when printed.
There are lots of new `allow` markers for `untranslatable_diagnostics`
and `diagnostics_outside_of_impl`. This is because
`#[rustc_lint_diagnostics]` annotations were present on the `Diagnostic`
modifier methods, but missing from the `DiagnosticBuilder` modifier
methods. They're now present.
There are lots of functions that modify a diagnostic. This can be via a
`&mut Diagnostic` or a `&mut DiagnosticBuilder`, because the latter type
wraps the former and impls `DerefMut`.
This commit converts all the `&mut Diagnostic` occurrences to `&mut
DiagnosticBuilder`. This is a step towards greatly simplifying
`Diagnostic`. Some of the relevant function are made generic, because
they deal with both errors and warnings. No function bodies are changed,
because all the modifier methods are available on both `Diagnostic` and
`DiagnosticBuilder`.
Tracking import use types for more accurate redundant import checking
fixes#117448
By tracking import use types to check whether it is scope uses or the other situations like module-relative uses, we can do more accurate redundant import checking.
For example unnecessary imports in std::prelude that can be eliminated:
```rust
use std::option::Option::Some;//~ WARNING the item `Some` is imported redundantly
use std::option::Option::None; //~ WARNING the item `None` is imported redundantly
```
fixes#117448
For example unnecessary imports in std::prelude that can be eliminated:
```rust
use std::option::Option::Some;//~ WARNING the item `Some` is imported redundantly
use std::option::Option::None; //~ WARNING the item `None` is imported redundantly
```
errors: only eagerly translate subdiagnostics
Subdiagnostics don't need to be lazily translated, they can always be eagerly translated. Eager translation is slightly more complex as we need to have a `DiagCtxt` available to perform the translation, which involves slightly more threading of that context.
This slight increase in complexity should enable later simplifications - like passing `DiagCtxt` into `AddToDiagnostic` and moving Fluent messages into the diagnostic structs rather than having them in separate files (working on that was what led to this change).
r? ```@nnethercote```
Add clippy into the known `cfg` list
In clippy, we are removing the `feature = "cargo-clippy"` cfg to replace it with `clippy` in https://github.com/rust-lang/rust-clippy/pull/12292. But for it to work, we need to declare `clippy` as cfg. It makes it more coherent with other existing tools like rustdoc.
cc `@flip1995`