This allows analyzing the output programatically; for example, finding
the item with the highest `total_estimate`.
I also took the liberty of adding `untracked` tests to `rustc_session` and documentation to the unstable book for `dump-mono-items`.
Encode spans relative to the enclosing item -- enable on nightly
Follow-up to #84373 with the flag `-Zincremental-relative-spans` set by default.
This PR seeks to remove one of the main shortcomings of incremental: the handling of spans.
Changing the contents of a function may require redoing part of the compilation process for another function in another file because of span information is changed.
Within one file: all the spans in HIR change, so typechecking had to be re-done.
Between files: spans of associated types/consts/functions change, so type-based resolution needs to be re-done (hygiene information is stored in the span).
The flag `-Zincremental-relative-spans` encodes local spans relative to the span of an item, stored inside the `source_span` query.
Trap: stashed diagnostics are referenced by the "raw" span, so stealing them requires to remove the span's parent.
In order to avoid too much traffic in the span interner, span encoding uses the `ctxt_or_tag` field to encode:
- the parent when the `SyntaxContext` is 0;
- the `SyntaxContext` when the parent is `None`.
Even with this, the PR creates a lot of traffic to the Span interner, when a Span has both a LocalDefId parent and a non-root SyntaxContext. They appear in lowering, when we add a parent to all spans, including those which come from macros, and during inlining when we mark inlined spans.
The last commit changes how queries of `LocalDefId` manage their cache. I can put this in a separate PR if required.
Possible future directions:
- validate that all spans are marked in HIR validation;
- mark macro-expanded spans relative to the def-site and not the use-site.
Remove wrapper functions for some unstable options
They are trivial and just forward to the option. Like most other options, we can just access it directly.
Using that options basically changes all stable hashes we may compute.
Adding/removing as UNTRACKED it makes everything ICE (unstable fingerprint
everywhere). As TRACKED, it can still do its job without ICEing.
Add LLVM KCFI support to the Rust compiler
This PR adds LLVM Kernel Control Flow Integrity (KCFI) support to the Rust compiler. It initially provides forward-edge control flow protection for operating systems kernels for Rust-compiled code only by aggregating function pointers in groups identified by their return and parameter types. (See llvm/llvm-project@cff5bef.)
Forward-edge control flow protection for C or C++ and Rust -compiled code "mixed binaries" (i.e., for when C or C++ and Rust -compiled code share the same virtual address space) will be provided in later work as part of this project by identifying C char and integer type uses at the time types are encoded (see Type metadata in the design document in the tracking issue #89653).
LLVM KCFI can be enabled with -Zsanitizer=kcfi.
Thank you again, `@bjorn3,` `@eddyb,` `@nagisa,` and `@ojeda,` for all the help!
This commit adds LLVM Kernel Control Flow Integrity (KCFI) support to
the Rust compiler. It initially provides forward-edge control flow
protection for operating systems kernels for Rust-compiled code only by
aggregating function pointers in groups identified by their return and
parameter types. (See llvm/llvm-project@cff5bef.)
Forward-edge control flow protection for C or C++ and Rust -compiled
code "mixed binaries" (i.e., for when C or C++ and Rust -compiled code
share the same virtual address space) will be provided in later work as
part of this project by identifying C char and integer type uses at the
time types are encoded (see Type metadata in the design document in the
tracking issue #89653).
LLVM KCFI can be enabled with -Zsanitizer=kcfi.
Co-authored-by: bjorn3 <17426603+bjorn3@users.noreply.github.com>
Allow use of `-Clto=thin` with `-Ccodegen-units=1` in general
The current logic to ignore ThinLTO when `-Ccodegen-units=1` makes sense for local ThinLTO but even in this scenario, a user may still want (non-local) ThinLTO for the purpose of optimizing dependencies into the final crate which is being compiled with 1 CGU.
The previous behavior was even more confusing because if you were generating a binary (`--emit=link`), then you would get ThinLTO but if you asked for LLVM IR or bytecode, then it would silently change to using regular LTO.
With this change, we only override the defaults for local ThinLTO if you ask for a single output such as LLVM IR or bytecode and in all other cases honor the requested LTO setting.
r? `@michaelwoerister`
Track where diagnostics were created.
This implements the `-Ztrack-diagnostics` flag, which uses `#[track_caller]` to track where diagnostics are created. It is meant as a debugging tool much like `-Ztreat-err-as-bug`.
For example, the following code...
```rust
struct A;
struct B;
fn main(){
let _: A = B;
}
```
...now emits the following error message:
```
error[E0308]: mismatched types
--> src\main.rs:5:16
|
5 | let _: A = B;
| - ^ expected struct `A`, found struct `B`
| |
| expected due to this
-Ztrack-diagnostics: created at compiler\rustc_infer\src\infer\error_reporting\mod.rs:2275:31
```
The current logic to ignore ThinLTO when `-Ccodegen-units=1` makes sense
for local ThinLTO but even in this scenario, a user may still want
(non-local) ThinLTO for the purpose of optimizing dependencies into the
final crate which is being compiled with 1 CGU.
The previous behavior was even more confusing because if you were
generating a binary (`--emit=link`), then you would get ThinLTO but if
you asked for LLVM IR or bytecode, then it would silently change to
using regular LTO.
With this change, we only override the defaults for local ThinLTO if you
ask for a single output such as LLVM IR or bytecode and in all other
cases honor the requested LTO setting.
The compiler currently has `-Ztime` and `-Ztime-passes`. I've used
`-Ztime-passes` for years but only recently learned about `-Ztime`.
What's the difference? Let's look at the `-Zhelp` output:
```
-Z time=val -- measure time of rustc processes (default: no)
-Z time-passes=val -- measure time of each rustc pass (default: no)
```
The `-Ztime-passes` description is clear, but the `-Ztime` one is less so.
Sounds like it measures the time for the entire process?
No. The real difference is that `-Ztime-passes` prints out info about passes,
and `-Ztime` does the same, but only for a subset of those passes. More
specifically, there is a distinction in the profiling code between a "verbose
generic activity" and an "extra verbose generic activity". `-Ztime-passes`
prints both kinds, while `-Ztime` only prints the first one. (It took me
a close reading of the source code to determine this difference.)
In practice this distinction has low value. Perhaps in the past the "extra
verbose" output was more voluminous, but now that we only print stats for a
pass if it exceeds 5ms or alters the RSS, `-Ztime-passes` is less spammy. Also,
a lot of the "extra verbose" cases are for individual lint passes, and you need
to also use `-Zno-interleave-lints` to see those anyway.
Therefore, this commit removes `-Ztime` and the associated machinery. One thing
to note is that the existing "extra verbose" activities all have an extra
string argument, so the commit adds the ability to accept an extra argument to
the "verbose" activities.
change rlib format to distinguish native dependencies
Another one method to solve problem mentioned in #99429.
Changed .rlib format, it contains all bundled native libraries as archieves.
At link time rlib is unpacked and native dependencies linked separately.
New behavior hidden under separate_native_rlib_dependencies flag.
`-Z location-detail`: provide option to disable all location details
As reported [here](https://github.com/rust-lang/rust/pull/89920#issuecomment-1190598924), when I first implemented the `-Z location-detail` flag there was a bug, where passing an empty list was not correctly supported, and instead rejected by the compiler. This PR fixes that such that passing an empty list results in no location details being tracked, as originally specified in https://github.com/rust-lang/rfcs/pull/2091 .
This PR also adds a test case to verify that this option continues to work as intended.
This is done by having the crossbeam dependency inserted into the
proc_macro server code from the server side, to avoid adding a
dependency to proc_macro.
In addition, this introduces a -Z command-line option which will switch
rustc to run proc-macros using this cross-thread executor. With the
changes to the bridge in #98186, #98187, #98188 and #98189, the
performance of the executor should be much closer to same-thread
execution.
In local testing, the crossbeam executor was substantially more
performant than either of the two existing CrossThread strategies, so
they have been removed to keep things simple.
Prior to this fix, `-Z location-detail` provided no mechanism for
disabling all location details. This commit also adds a test case
to verify that this option continues to work as intended, and
clarifies the documentation of this option.
Some command-line options accessible through `sess.opts` are best
accessed through wrapper functions on `Session`, `TyCtxt` or otherwise,
rather than through field access on the option struct in the `Session`.
Adds a new lint which triggers on those options that should be accessed
through a wrapper function so that this is prohibited. Options are
annotated with a new attribute `rustc_lint_opt_deny_field_access` which
can specify the error message (i.e. "use this other function instead")
to be emitted.
A simpler alternative would be to simply rename the options in the
option type so that it is clear they should not be used, however this
doesn't prevent uses, just discourages them. Another alternative would
be to make the option fields private, and adding accessor functions on
the option types, however the wrapper functions sometimes rely on
additional state from `Session` or `TyCtxt` which wouldn't be available
in an function on the option type, so the accessor would simply make the
field available and its use would be discouraged too.
Signed-off-by: David Wood <david.wood@huawei.com>
Add support for LLVM ShadowCallStack.
LLVMs ShadowCallStack provides backward edge control flow integrity protection by using a separate shadow stack to store and retrieve a function's return address.
LLVM currently only supports this for AArch64 targets. The x18 register is used to hold the pointer to the shadow stack, and therefore this only works on ABIs which reserve x18. Further details are available in the [LLVM ShadowCallStack](https://clang.llvm.org/docs/ShadowCallStack.html) docs.
# Usage
`-Zsanitizer=shadow-call-stack`
# Comments/Caveats
* Currently only enabled for the aarch64-linux-android target
* Requires the platform to define a runtime to initialize the shadow stack, see the [LLVM docs](https://clang.llvm.org/docs/ShadowCallStack.html) for more detail.
Allow to disable thinLTO buffer to support lto-embed-bitcode lld feature
Hello
This change is to fix issue (https://github.com/rust-lang/rust/issues/84395) in which passing "-lto-embed-bitcode=optimized" to lld when linking rust code via linker-plugin-lto doesn't produce the expected result.
Instead of emitting a single unified module into a llvmbc section of the linked elf, it emits multiple submodules.
This is caused because rustc emits the BC modules after running llvm `createWriteThinLTOBitcodePass` pass.
Which in turn triggers a thinLTO linkage and causes the said issue.
This patch allows via compiler flag (-Cemit-thin-lto=<bool>) to select between running `createWriteThinLTOBitcodePass` and `createBitcodeWriterPass`.
Note this pattern of selecting between those 2 passes is common inside of LLVM code.
The default is to match the old behavior.
Adding the option to control from rustc CLI
if the resulted ".o" bitcode module files are with
thinLTO info or regular LTO info.
Allows using "-lto-embed-bitcode=optimized" during linkage
correctly.
Signed-off-by: Ziv Dunkelman <ziv.dunkelman@nextsilicon.com>
DWARF version 5 brings a number of improvements over version 4. Quoting from
the announcement [1]:
> Version 5 incorporates improvements in many areas: better data compression,
> separation of debugging data from executable files, improved description of
> macros and source files, faster searching for symbols, improved debugging
> optimized code, as well as numerous improvements in functionality and
> performance.
On platforms where DWARF version 5 is supported (Linux, primarily), this commit
adds support for it behind a new `-Z dwarf-version=5` flag.
[1]: https://dwarfstd.org/Public_Review.php
Add a `-Zdump-drop-tracking-cfg` debugging flag
This is useful for debugging drop-tracking; previously, you had to recompile
rustc from source and manually add a call to `write_graph_to_file`. This
makes the option more discoverable and configurable at runtime.
I also took the liberty of making the labels for the CFG nodes much easier to read:
previously, they looked like `id(2), local_id: 48`, now they look like
```
expr from_config (hir_id=HirId { owner: DefId(0:10 ~ default_struct_update[79f9]::foo), local_id: 2})
```
r? ``@eholk``
Rename the `--output-width` flag to `--diagnostic-width` as this appears
to be the preferred name within the compiler team.
Signed-off-by: David Wood <david.wood@huawei.com>
Rename the `--terminal-width` flag to `--output-width` as the behaviour
doesn't just apply to terminals (and so is slightly less accurate).
Signed-off-by: David Wood <david.wood@huawei.com>
Formerly `-Zterminal-width`, `--terminal-width` allows the user or build
tool to inform rustc of the width of the terminal so that diagnostics
can be truncated.
Signed-off-by: David Wood <david.wood@huawei.com>
This is useful for debugging drop-tracking; previously, you had to recompile
rustc from source and manually add a call to `write_graph_to_file`. This
makes the option more discoverable and configurable at runtime.
I also took the liberty of making the labels for the CFG nodes much easier to read:
previously, they looked like `id(2), local_id: 48`, now they look like
```
expr from_config (hir_id=HirId { owner: DefId(0:10 ~ default_struct_update[79f9]::foo), local_id: 2})
```
Adds the virtual-function-elimination unstable compiler flag and a check
that this flag is only used in combination with -Clto. LLVM can only
apply this optimization with fat LTO.
Fix#71363's test by adding `-Z translate-remapped-path-to-local-path=no`
The test relies on `library/std/src/error.rs` not corresponding to a local path, but remapping might still find the related local file of a remapped path. To fix the test, this PR adds a new `-Z` flag to disable finding the corresponding local path of a remapped path.
The test relies on library/std/src/error.rs not corresponding to a local
path, but remapping might still find the related local file of a
remapped path. To fix the test, this adds a new -Z flag to disable
finding the corresponding local path of a remapped path.
Since Cargo wants to do its own fatal error handling for unused
dependencies, add the option `--json unused-externs-silent` which
has the original behaviour of not indicating non-zero exit status for
`deny`/`forbid`-level unused dependencies.
Implement MIR opt unit tests
This implements rust-lang/compiler-team#502 .
There's not much to say here, this implementation does everything as proposed. I also added the flag to a bunch of existing tests (mostly those to which I could add it without causing huge diffs due to changes in line numbers). Summarizing the changes to test outputs:
- Every time an `MirPatch` is created, it adds a cleanup block to the body if it did not exist already. If this block is unused (as is usually the case), it usually gets removed soon after by some pass calling `SimplifyCFG` for unrelated reasons (in many cases this cycle happens quite a few times for a single body). We now run `SimplifyCFG` less often, so those blocks end up in some of our outputs. I looked at changing `MirPatch` to not do this, but that seemed too complicated for this PR. I may still do that in a follow-up.
- The `InstCombine` test had set `-C opt-level=0` in its flags and so there were no storage markers. I don't really see a good motivation for doing this, so bringing it back in line with what everything else does seems correct.
- One of the `EarlyOtherwiseBranch` tests had `UnreachableProp` running on it. Preventing that kind of thing is the goal of this feature, so this seems fine.
For the remaining tests for which this feature might be useful, we can gradually migrate them as opportunities present themselves.
In terms of documentation, I plan on submitting a PR to the rustc dev guide in the near future documenting this and other recent changes to MIR. If there's any other places to update, do let me know
r? `@nagisa`
`--extern-location` was an experiment to investigate the best way to
generate useful diagnostics for unused dependency warnings by enabling a
build system to identify the corresponding build config.
While I did successfully use this, I've since been convinced the
alternative `--json unused-externs` mechanism is the way to go, and
there's no point in having two mechanisms with basically the same
functionality.
This effectively reverts https://github.com/rust-lang/rust/pull/72603
Add an option for enabling and disabling Fluent's directionality
isolation markers in output. Disabled by default as these can render in
some terminals and applications.
Signed-off-by: David Wood <david.wood@huawei.com>
Extend loading of Fluent bundles so that bundles can be loaded from the
sysroot based on the language requested by the user, or using a nightly
flag.
Sysroot bundles are loaded from `$sysroot/share/locale/$locale/*.ftl`.
Signed-off-by: David Wood <david.wood@huawei.com>
Implement -Z oom=panic
This PR removes the `#[rustc_allocator_nounwind]` attribute on `alloc_error_handler` which allows it to unwind with a panic instead of always aborting. This is then used to implement `-Z oom=panic` as per RFC 2116 (tracking issue #43596).
Perf and binary size tests show negligible impact.
Remove num_cpus dependency from bootstrap, build-manifest and rustc_s…
…ession
`std::threads::available_parallelism` was stabilized in rust 1.59.
r? ```````````````````````````@Mark-Simulacrum```````````````````````````
No branch protection metadata unless enabled
Even if we emit metadata disabling branch protection, this metadata may
conflict with other modules (e.g. during LTO) that have different branch
protection metadata set.
This is an unstable flag and feature, so ideally the flag not being
specified should act as if the feature wasn't implemented in the first
place.
Additionally this PR also ensures we emit an error if
`-Zbranch-protection` is set on targets other than the supported
aarch64. For now the error is being output from codegen, but ideally it
should be moved to earlier in the pipeline before stabilization.
Use undef for (some) partially-uninit constants
There needs to be some limit to avoid perf regressions on large arrays
with undef in each element (see comment in the code).
Fixes: #84565
Original PR: #83698
Depends on LLVM 14: #93577
Adopt let else in more places
Continuation of #89933, #91018, #91481, #93046, #93590, #94011.
I have extended my clippy lint to also recognize tuple passing and match statements. The diff caused by fixing it is way above 1 thousand lines. Thus, I split it up into multiple pull requests to make reviewing easier. This is the biggest of these PRs and handles the changes outside of rustdoc, rustc_typeck, rustc_const_eval, rustc_trait_selection, which were handled in PRs #94139, #94142, #94143, #94144.
Even if we emit metadata disabling branch protection, this metadata may
conflict with other modules (e.g. during LTO) that have different branch
protection metadata set.
This is an unstable flag and feature, so ideally the flag not being
specified should act as if the feature wasn't implemented in the first
place.
Additionally this PR also ensures we emit an error if
`-Zbranch-protection` is set on targets other than the supported
aarch64. For now the error is being output from codegen, but ideally it
should be moved to earlier in the pipeline before stabilization.
Add MemTagSanitizer Support
Add support for the LLVM [MemTagSanitizer](https://llvm.org/docs/MemTagSanitizer.html).
On hardware which supports it (see caveats below), the MemTagSanitizer can catch bugs similar to AddressSanitizer and HardwareAddressSanitizer, but with lower overhead.
On a tag mismatch, a SIGSEGV is signaled with code SEGV_MTESERR / SEGV_MTEAERR.
# Usage
`-Zsanitizer=memtag -C target-feature="+mte"`
# Comments/Caveats
* MemTagSanitizer is only supported on AArch64 targets with hardware support
* Requires `-C target-feature="+mte"`
* LLVM MemTagSanitizer currently only performs stack tagging.
# TODO
* Tests
* Example
This change adds a flag for configuring control-flow protection in the
LLVM backend. In Clang, this flag is exposed as `-fcf-protection` with
options `none|branch|return|full`. This convention is followed for
`rustc`, though as a codegen option: `rustc -Z
cf-protection=<none|branch|return|full>`.
Co-authored-by: BlackHoleFox <blackholefoxdev@gmail.com>
This option introduced in #15820 allows a custom crate to be imported in
the place of std, but with the name std. I don't think there is any
value to this. At most it is confusing users of a driver that uses this option. There are no users of
this option on github. If anyone still needs it, they can emulate it
injecting #![no_core] in addition to their own prelude.
Delete -Zquery-stats infrastructure
These statistics are computable from the self-profile data and/or ad-hoc collectable as needed, and in the meantime contribute to rustc bootstrap times -- locally, this PR shaves ~2.5% from rustc_query_impl builds in instruction counts.
If this does lose some functionality we want to keep, I think we should migrate it to self-profile (or a similar interface) rather than this ad-hoc reporting.
These statistics are computable from the self-profile data and/or ad-hoc
collectable as needed, and in the meantime contribute to rustc bootstrap times.
Stabilize `-Z instrument-coverage` as `-C instrument-coverage`
(Tracking issue for `instrument-coverage`: https://github.com/rust-lang/rust/issues/79121)
This PR stabilizes support for instrumentation-based code coverage, previously provided via the `-Z instrument-coverage` option. (Continue supporting `-Z instrument-coverage` for compatibility for now, but show a deprecation warning for it.)
Many, many people have tested this support, and there are numerous reports of it working as expected.
Move the documentation from the unstable book to stable rustc documentation. Update uses and documentation to use the `-C` option.
Addressing questions raised in the tracking issue:
> If/when stabilized, will the compiler flag be updated to -C instrument-coverage? (If so, the -Z variant could also be supported for some time, to ease migrations for existing users and scripts.)
This stabilization PR updates the option to `-C` and keeps the `-Z` variant to ease migration.
> The Rust coverage implementation depends on (and automatically turns on) -Z symbol-mangling-version=v0. Will stabilizing this feature depend on stabilizing v0 symbol-mangling first? If so, what is the current status and timeline?
This stabilization PR depends on https://github.com/rust-lang/rust/pull/90128 , which stabilizes `-C symbol-mangling-version=v0` (but does not change the default symbol-mangling-version).
> The Rust coverage implementation implements the latest version of LLVM's Coverage Mapping Format (version 4), which forces a dependency on LLVM 11 or later. A compiler error is generated if attempting to compile with coverage, and using an older version of LLVM.
Given that LLVM 13 has now been released, requiring LLVM 11 for coverage support seems like a reasonable requirement. If people don't have at least LLVM 11, nothing else breaks; they just can't use coverage support. Given that coverage support currently requires a nightly compiler and LLVM 11 or newer, allowing it on a stable compiler built with LLVM 11 or newer seems like an improvement.
The [tracking issue](https://github.com/rust-lang/rust/issues/79121) and the [issue label A-code-coverage](https://github.com/rust-lang/rust/labels/A-code-coverage) link to a few open issues related to `instrument-coverage`, but none of them seem like showstoppers. All of them seem like improvements and refinements we can make after stabilization.
The original `-Z instrument-coverage` support went through a compiler-team MCP at https://github.com/rust-lang/compiler-team/issues/278 . Based on that, `@pnkfelix` suggested that this needed a stabilization PR and a compiler-team FCP.
Stabilize `-Z print-link-args` as `--print link-args`
We have stable options for adding linker arguments; we should have a
stable option to help debug linker arguments.
Add documentation for the new option. In the documentation, make it clear that
the *exact* format of the output is not a stable guarantee.
Implement raw-dylib support for windows-gnu
Add support for `#[link(kind = "raw-dylib")]` on windows-gnu targets. Work around binutils's linker's inability to read import libraries produced by LLVM by calling out to the binutils `dlltool` utility to create an import library from a temporary .DEF file; this approach is effectively a slightly refined version of `@mati865's` earlier attempt at this strategy in PR #88801. (In particular, this attempt at this strategy adds support for `#[link_ordinal(...)]` as well.)
In support of #58713.
In #79570, `-Z split-dwarf-kind={none,single,split}` was replaced by `-C
split-debuginfo={off,packed,unpacked}`. `-C split-debuginfo`'s packed
and unpacked aren't exact parallels to single and split, respectively.
On Unix, `-C split-debuginfo=packed` will put debuginfo into object
files and package debuginfo into a DWARF package file (`.dwp`) and
`-C split-debuginfo=unpacked` will put debuginfo into dwarf object files
and won't package it.
In the initial implementation of Split DWARF, split mode wrote sections
which did not require relocation into a DWARF object (`.dwo`) file which
was ignored by the linker and then packaged those DWARF objects into
DWARF packages (`.dwp`). In single mode, sections which did not require
relocation were written into object files but ignored by the linker and
were not packaged. However, both split and single modes could be
packaged or not, the primary difference in behaviour was where the
debuginfo sections that did not require link-time relocation were
written (in a DWARF object or the object file).
This commit re-introduces a `-Z split-dwarf-kind` flag, which can be
used to pick between split and single modes when `-C split-debuginfo` is
used to enable Split DWARF (either packed or unpacked).
Signed-off-by: David Wood <david.wood@huawei.com>
Continue supporting -Z instrument-coverage for compatibility for now,
but show a deprecation warning for it.
Update uses and documentation to use the -C option.
Move the documentation from the unstable book to stable rustc
documentation.
This allows selecting `v0` symbol-mangling without an unstable option.
Selecting `legacy` still requires -Z unstable-options.
Continue supporting -Z symbol-mangling-version for compatibility for
now, but show a deprecation warning for it.
Add codegen option for branch protection and pointer authentication on AArch64
The branch-protection codegen option enables the use of hint-space pointer
authentication code for AArch64 targets.
Add user seed to `-Z randomize-layout`
Allows users of -`Z randomize-layout` to provide `-Z layout-seed=<seed>` in order to further randomizing type layout randomization. Extension of [compiler-team/#457](https://github.com/rust-lang/compiler-team/issues/457), allows users to change struct layouts without changing code and hoping that item path hashes change, aiding in detecting layout errors
- Changed the separator from '+' to ','.
- Moved the branch protection options from -C to -Z.
- Additional test for incorrect branch-protection option.
- Remove LLVM < 12 code.
- Style fixes.
Co-authored-by: James McGregor <james.mcgregor2@arm.com>
LLVM has built-in heuristics for adding stack canaries to functions. These
heuristics can be selected with LLVM function attributes. This patch adds a
rustc option `-Z stack-protector={none,basic,strong,all}` which controls the use
of these attributes. This gives rustc the same stack smash protection support as
clang offers through options `-fno-stack-protector`, `-fstack-protector`,
`-fstack-protector-strong`, and `-fstack-protector-all`. The protection this can
offer is demonstrated in test/ui/abi/stack-protector.rs. This fills a gap in the
current list of rustc exploit
mitigations (https://doc.rust-lang.org/rustc/exploit-mitigations.html),
originally discussed in #15179.
Stack smash protection adds runtime overhead and is therefore still off by
default, but now users have the option to trade performance for security as they
see fit. An example use case is adding Rust code in an existing C/C++ code base
compiled with stack smash protection. Without the ability to add stack smash
protection to the Rust code, the code base artifacts could be exploitable in
ways not possible if the code base remained pure C/C++.
Stack smash protection support is present in LLVM for almost all the current
tier 1/tier 2 targets: see
test/assembly/stack-protector/stack-protector-target-support.rs. The one
exception is nvptx64-nvidia-cuda. This patch follows clang's example, and adds a
warning message printed if stack smash protection is used with this target (see
test/ui/stack-protector/warn-stack-protector-unsupported.rs). Support for tier 3
targets has not been checked.
Since the heuristics are applied at the LLVM level, the heuristics are expected
to add stack smash protection to a fraction of functions comparable to C/C++.
Some experiments demonstrating how Rust code is affected by the different
heuristics can be found in
test/assembly/stack-protector/stack-protector-heuristics-effect.rs. There is
potential for better heuristics using Rust-specific safety information. For
example it might be reasonable to skip stack smash protection in functions which
transitively only use safe Rust code, or which uses only a subset of functions
the user declares safe (such as anything under `std.*`). Such alternative
heuristics could be added at a later point.
LLVM also offers a "safestack" sanitizer as an alternative way to guard against
stack smashing (see #26612). This could possibly also be included as a
stack-protection heuristic. An alternative is to add it as a sanitizer (#39699).
This is what clang does: safestack is exposed with option
`-fsanitize=safe-stack`.
The options are only supported by the LLVM backend, but as with other codegen
options it is visible in the main codegen option help menu. The heuristic names
"basic", "strong", and "all" are hopefully sufficiently generic to be usable in
other backends as well.
Reviewed-by: Nikita Popov <nikic@php.net>
Extra commits during review:
- [address-review] make the stack-protector option unstable
- [address-review] reduce detail level of stack-protector option help text
- [address-review] correct grammar in comment
- [address-review] use compiler flag to avoid merging functions in test
- [address-review] specify min LLVM version in fortanix stack-protector test
Only for Fortanix test, since this target specifically requests the
`--x86-experimental-lvi-inline-asm-hardening` flag.
- [address-review] specify required LLVM components in stack-protector tests
- move stack protector option enum closer to other similar option enums
- rustc_interface/tests: sort debug option list in tracking hash test
- add an explicit `none` stack-protector option
Revert "set LLVM requirements for all stack protector support test revisions"
This reverts commit a49b74f92a4e7d701d6f6cf63d207a8aff2e0f68.
Try all stable method candidates first before trying unstable ones
Currently we try methods in this order in each step:
* Stable by value
* Unstable by value
* Stable autoref
* Unstable autoref
* ...
This PR changes it to first try pick methods without any unstable candidates, and if none is found, try again to pick unstable ones.
Fix#90320
CC #88971, hopefully would allow us to rename the "unstable_*" methods for integer impls back.
`@rustbot` label T-compiler T-libs-api
Leave -Z strip available temporarily as an alias, to avoid breaking
cargo until cargo transitions to using -C strip. (If the user passes
both, the -C version wins.)
Tweak the `options!` macro to allow for -Z and -C options with the same
name without generating conflicting internal parsing functions.
Split out of the commit stabilizing -Z strip as -C strip.
Added the --temps-dir option
Fixes#10971.
The new `--temps-dir` option puts intermediate files in a user-specified directory. This provides a fix for the issue where parallel invocations of rustc would overwrite each other's intermediate files.
No files are kept in the intermediate directory unless `-C save-temps=yes`.
If additional files are specifically requested using `--emit asm,llvm-bc,llvm-ir,obj,metadata,link,dep-info,mir`, these will be put in the output directory rather than the intermediate directory.
This is a backward-compatible change, i.e. if `--temps-dir` is not specified, the behavior is the same as before.
Add LLVM CFI support to the Rust compiler
This PR adds LLVM Control Flow Integrity (CFI) support to the Rust compiler. It initially provides forward-edge control flow protection for Rust-compiled code only by aggregating function pointers in groups identified by their number of arguments.
Forward-edge control flow protection for C or C++ and Rust -compiled code "mixed binaries" (i.e., for when C or C++ and Rust -compiled code share the same virtual address space) will be provided in later work as part of this project by defining and using compatible type identifiers (see Type metadata in the design document in the tracking issue #89653).
LLVM CFI can be enabled with -Zsanitizer=cfi and requires LTO (i.e., -Clto).
Thank you, `@eddyb` and `@pcc,` for all the help!
This commit adds LLVM Control Flow Integrity (CFI) support to the Rust
compiler. It initially provides forward-edge control flow protection for
Rust-compiled code only by aggregating function pointers in groups
identified by their number of arguments.
Forward-edge control flow protection for C or C++ and Rust -compiled
code "mixed binaries" (i.e., for when C or C++ and Rust -compiled code
share the same virtual address space) will be provided in later work as
part of this project by defining and using compatible type identifiers
(see Type metadata in the design document in the tracking issue #89653).
LLVM CFI can be enabled with -Zsanitizer=cfi and requires LTO (i.e.,
-Clto).
Add -Z no-unique-section-names to reduce ELF header bloat.
This change adds a new compiler flag that can help reduce the size of ELF binaries that contain many functions.
By default, when enabling function sections (which is the default for most targets), the LLVM backend will generate different section names for each function. For example, a function `func` would generate a section called `.text.func`. Normally this is fine because the linker will merge all those sections into a single one in the binary. However, starting with [LLVM 12](https://github.com/llvm/llvm-project/commit/ee5d1a04), the backend will also generate unique section names for exception handling, resulting in thousands of `.gcc_except_table.*` sections ending up in the final binary because some linkers like LLD don't currently merge or strip these EH sections (see discussion [here](https://reviews.llvm.org/D83655)). This can bloat the ELF headers and string table significantly in binaries that contain many functions.
The new option is analogous to Clang's `-fno-unique-section-names`, and instructs LLVM to generate the same `.text` and `.gcc_except_table` section for each function, resulting in a smaller final binary.
The motivation to add this new option was because we have a binary that ended up with so many ELF sections (over 65,000) that it broke some existing ELF tools, which couldn't handle so many sections.
Here's our old binary:
```
$ readelf --sections old.elf | head -1
There are 71746 section headers, starting at offset 0x2a246508:
$ readelf --sections old.elf | grep shstrtab
[71742] .shstrtab STRTAB 0000000000000000 2977204c ad44bb 00 0 0 1
```
That's an 11MB+ string table. Here's the new binary using this option:
```
$ readelf --sections new.elf | head -1
There are 43 section headers, starting at offset 0x29143ca8:
$ readelf --sections new.elf | grep shstrtab
[40] .shstrtab STRTAB 0000000000000000 29143acc 0001db 00 0 0 1
```
The whole binary size went down by over 20MB, which is quite significant.
Implement -Z location-detail flag
This PR implements the `-Z location-detail` flag as described in https://github.com/rust-lang/rfcs/pull/2091 .
`-Z location-detail=val` controls what location details are tracked when using `caller_location`. This allows users to control what location details are printed as part of panic messages, by allowing them to exclude any combination of filenames, line numbers, and column numbers. This option is intended to provide users with a way to mitigate the size impact of `#[track_caller]`.
Some measurements of the savings of this approach on an embedded binary can be found here: https://github.com/rust-lang/rust/issues/70579#issuecomment-942556822 .
Closes#70580 (unless people want to leave that open as a place for discussion of further improvements).
This is my first real PR to rust, so any help correcting mistakes / understanding side effects / improving my tests is appreciated :)
I have one question: RFC 2091 specified this as a debugging option (I think that is what -Z implies?). Does that mean this can never be stabilized without a separate MCP? If so, do I need to submit an MCP now, or is the initial RFC specifying this option sufficient for this to be merged as is, and then an MCP would be needed for eventual stabilization?
Add support for artifact size profiling
This adds support for profiling artifact file sizes (incremental compilation artifacts and query cache to begin with).
Eventually we want to track this in perf.rlo so we can ensure that file sizes do not change dramatically on each pull request.
This relies on support in measureme: https://github.com/rust-lang/measureme/pull/169. Once that lands we can update this PR to not point to a git dependency.
This was worked on together with `@michaelwoerister.`
r? `@wesleywiser`
This change adds a new compiler flag that can help reduce the size of
ELF binaries that contain many functions.
By default, when enabling function sections (which is the default for most
targets), the LLVM backend will generate different section names for each
function. For example, a function "func" would generate a section called
".text.func". Normally this is fine because the linker will merge all those
sections into a single one in the binary. However, starting with LLVM 12
(llvm/llvm-project@ee5d1a0), the backend will
also generate unique section names for exception handling, resulting in
thousands of ".gcc_except_table.*" sections ending up in the final binary
because some linkers don't currently merge or strip these EH sections.
This can bloat the ELF headers and string table significantly in
binaries that contain many functions.
The new option is analogous to Clang's -fno-unique-section-names, and
instructs LLVM to generate the same ".text" and ".gcc_except_table"
section for each function, resulting in smaller object files and
potentially a smaller final binary.
This largely involves implementing the options debug-info-for-profiling
and profile-sample-use and forwarding them on to LLVM.
AutoFDO can be used on x86-64 Linux like this:
rustc -O -Cdebug-info-for-profiling main.rs -o main
perf record -b ./main
create_llvm_prof --binary=main --out=code.prof
rustc -O -Cprofile-sample-use=code.prof main.rs -o main2
Now `main2` will have feedback directed optimization applied to it.
The create_llvm_prof tool can be obtained from this github repository:
https://github.com/google/autofdoFixes#64892.
Introduce -Z remap-cwd-prefix switch
This switch remaps any absolute paths rooted under the current
working directory to a new value. This includes remapping the
debug info in `DW_AT_comp_dir` and `DW_AT_decl_file`.
Importantly, this flag does not require passing the current working
directory to the compiler, such that the command line can be
run on any machine (with the same input files) and produce the
same results. This is critical property for debugging compiler
issues that crop up on remote machines.
This is based on adetaylor's dbc4ae7cba
Major Change Proposal: https://github.com/rust-lang/compiler-team/issues/450
Discussed on #38322. Would resolve issue #87325.
Add -Z panic-in-drop={unwind,abort} command-line option
This PR changes `Drop` to abort if an unwinding panic attempts to escape it, making the process abort instead. This has several benefits:
- The current behavior when unwinding out of `Drop` is very unintuitive and easy to miss: unwinding continues, but the remaining drops in scope are simply leaked.
- A lot of unsafe code doesn't expect drops to unwind, which can lead to unsoundness:
- https://github.com/servo/rust-smallvec/issues/14
- https://github.com/bluss/arrayvec/issues/3
- There is a code size and compilation time cost to this: LLVM needs to generate extra landing pads out of all calls in a drop implementation. This can compound when functions are inlined since unwinding will then continue on to process drops in the callee, which can itself unwind, etc.
- Initial measurements show a 3% size reduction and up to 10% compilation time reduction on some crates (`syn`).
One thing to note about `-Z panic-in-drop=abort` is that *all* crates must be built with this option for it to be sound since it makes the compiler assume that dropping `Box<dyn Any>` will never unwind.
cc https://github.com/rust-lang/lang-team/issues/97
Fixes#85019
A `SourceFile` created during compilation may have a relative
path (e.g. if rustc itself is invoked with a relative path).
When we write out crate metadata, we convert all relative paths
to absolute paths using the current working direction.
However, the working directory is not included in the crate hash.
This means that the crate metadata can change while the crate
hash remains the same. Among other problems, this can cause a
fingerprint mismatch ICE, since incremental compilation uses
the crate metadata hash to determine if a foreign query is green.
This commit moves the field holding the working directory from
`Session` to `Options`, including it as part of the crate hash.
This was removed by #85284 in favor of -Zprofiler-runtime=<name>.
However the suggested -Zprofiler-runtime=None doesn't work because
"None" is treated as a crate name.