This commit is a followup to https://github.com/rust-lang/rust/pull/124032. It
replaces the tests that test the various sort functions in the standard library
with a test-suite developed as part of
https://github.com/Voultapher/sort-research-rs. The current tests suffer a
couple of problems:
- They don't cover important real world patterns that the implementations take
advantage of and execute special code for.
- The input lengths tested miss out on code paths. For example, important safety
property tests never reach the quicksort part of the implementation.
- The miri side is often limited to `len <= 20` which means it very thoroughly
tests the insertion sort, which accounts for 19 out of 1.5k LoC.
- They are split into to core and alloc, causing code duplication and uneven
coverage.
- The randomness is not repeatable, as it
relies on `std:#️⃣:RandomState::new().build_hasher()`.
Most of these issues existed before
https://github.com/rust-lang/rust/pull/124032, but they are intensified by it.
One thing that is new and requires additional testing, is that the new sort
implementations specialize based on type properties. For example `Freeze` and
non `Freeze` execute different code paths.
Effectively there are three dimensions that matter:
- Input type
- Input length
- Input pattern
The ported test-suite tests various properties along all three dimensions,
greatly improving test coverage. It side-steps the miri issue by preferring
sampled approaches. For example the test that checks if after a panic the set of
elements is still the original one, doesn't do so for every single possible
panic opportunity but rather it picks one at random, and performs this test
across a range of input length, which varies the panic point across them. This
allows regular execution to easily test inputs of length 10k, and miri execution
up to 100 which covers significantly more code. The randomness used is tied to a
fixed - but random per process execution - seed. This allows for fully
repeatable tests and fuzzer like exploration across multiple runs.
Structure wise, the tests are previously found in the core integration tests for
`sort_unstable` and alloc unit tests for `sort`. The new test-suite was
developed to be a purely black-box approach, which makes integration testing the
better place, because it can't accidentally rely on internal access. Because
unwinding support is required the tests can't be in core, even if the
implementation is, so they are now part of the alloc integration tests. Are
there architectures that can only build and test core and not alloc? If so, do
such platforms require sort testing? For what it's worth the current
implementation state passes miri `--target mips64-unknown-linux-gnuabi64` which
is big endian.
The test-suite also contains tests for properties that were and are given by the
current and previous implementations, and likely relied upon by users but
weren't tested. For example `self_cmp` tests that the two parameters `a` and `b`
passed into the comparison function are never references to the same object,
which if the user is sorting for example a `&mut [Mutex<i32>]` could lead to a
deadlock.
Instead of using the hashed caller location as rand seed, it uses seconds since
unix epoch / 10, which given timestamps in the CI should be reasonably easy to
reproduce, but also allows fuzzer like space exploration.
[`cfg_match`] Generalize inputs
cc #115585
Changes the input type from `item` to `tt`, which makes the macro have the same functionality of `cfg_if`.
Also adds a test to ensure that `stmt_expr_attributes` is not triggered.
Improve documentation for <integer>::from_str_radix
Two improvements to the documentation:
- Document `-` as a valid character for signed integer destinations
- Make the documentation even more clear that extra whitespace and non-digit characters is invalid. Many other languages, e.g. c++, are very permissive in string to integer routines and simply try to consume as much as they can, ignoring the rest. This is trying to make the transition for developers who are used to the conversion semantics in these languages a bit easier.
In the implementation of `force_mut`, I chose performance over safety.
For `LazyLock` this isn't really a choice; the code has to be unsafe.
But for `LazyCell`, we can have a full-safe implementation, but it will
be a bit less performant, so I went with the unsafe approach.
some const cleanup: remove unnecessary attributes, add const-hack indications
I learned that we use `FIXME(const-hack)` on top of the "const-hack" label. That seems much better since it marks the right place in the code and moves around with the code. So I went through the PRs with that label and added appropriate FIXMEs in the code. IMO this means we can then remove the label -- Cc ``@rust-lang/wg-const-eval.``
I also noticed some const stability attributes that don't do anything useful, and removed them.
r? ``@fee1-dead``
Two improvements to the documentation:
- Document `-` as a valid character for signed integer destinations
- Make the documentation even more clear that extra whitespace and non-digit characters is invalid. Many other
languages, e.g. c++, are very permissive in string to integer routines and simply try to consume as much as they can,
ignoring the rest. This is trying to make the transition for developers who are used to the conversion semantics in
these languages a bit easier.
Re-enable android tests/benches in alloc/core
This is basically a revert of https://github.com/rust-lang/rust/pull/73729. These tests better work on android now; it's been 4 years and we don't use dlmalloc on that target anymore.
And I've validated that they should pass now with a try-build :)
* Choose test inputs more thoroughly and systematically.
* Check that `isqrt` and `checked_isqrt` have equivalent results for
signed types, either equivalent numerically or equivalent as a panic
and a `None`.
* Check that `isqrt` has numerically-equivalent results for unsigned
types and their `NonZero` counterparts.
* Reuse `ilog10` benchmarks, plus benchmarks that use a uniform
distribution.
Implement `debug_more_non_exhaustive`
This implements the ACP at https://github.com/rust-lang/libs-team/issues/248, adding `.finish_non_exhaustive()` for `DebugTuple`, `DebugSet`, `DebugList`, and `DebugMap`.
Also used this as an opportunity to make some documentation and tests more readable by using raw strings instead of escaped quotes.
Tracking issue: https://github.com/rust-lang/rust/issues/127942
CloneToUninit impls
As per #126799.
Also implements it for `Wtf8` and both versions of `os_str::Slice`.
Maybe it is worth to slap `#[inline]` on some of those impls.
r? `@dtolnay`
Stabilize `const_waker`
Closes: https://github.com/rust-lang/rust/issues/102012.
For `local_waker` and `context_ext` related things, I just ~~moved them to dedicated feature gates and reused their own tracking issue (maybe it's better to open a new one later, but at least they should not be tracked under https://github.com/rust-lang/rust/issues/102012 from the beginning IMO.)~~ reused their own feature gates as suggested by ``@tgross35.``
``@rustbot`` label: +T-libs-api
r? libs-api
add `is_multiple_of` for unsigned integer types
tracking issue: https://github.com/rust-lang/rust/issues/128101
This adds the `.is_multiple_of` method on unsigned integers.
Returns `true` if `self` is an integer multiple of `rhs`, and false otherwise.
This function is equivalent to `self % rhs == 0`, except that it will not panic for `rhs == 0`. Instead, `0.is_multiple_of(0) == true`, and for any non-zero `n`, `n.is_multiple_of(0) == false`.
Fix doc nits
Many tiny changes to stdlib doc comments to make them consistent (for example "Returns foo", rather than "Return foo"), adding missing periods, paragraph breaks, backticks for monospace style, and other minor nits.
Stabilize const `{integer}::from_str_radix` i.e. `const_int_from_str`
This PR stabilizes the feature `const_int_from_str`.
- ACP Issue: rust-lang/libs-team#74
- Implementation PR: rust-lang/rust#99322
- Part of Tracking Issue: rust-lang/rust#59133
API Change Diff:
```diff
impl {integer} {
- pub fn from_str_radix(src: &str, radix: u32) -> Result<Self, ParseIntError>;
+ pub const fn from_str_radix(src: &str, radix: u32) -> Result<Self, ParseIntError>;
}
impl ParseIntError {
- pub fn kind(&self) -> &IntErrorKind;
+ pub const fn kind(&self) -> &IntErrorKind;
}
```
This makes it easier to parse integers at compile-time, e.g.
the example from the Tracking Issue:
```rust
env!("SOMETHING").parse::<usize>().unwrap()
```
could now be achived with
```rust
match usize::from_str_radix(env!("SOMETHING"), 10) {
Ok(val) => val,
Err(err) => panic!("Invalid value for SOMETHING environment variable."),
}
```
rather than having to depend on a library that implements or manually implement the parsing at compile-time.
---
Checklist based on [Libs Stabilization Guide - When there's const involved](https://std-dev-guide.rust-lang.org/development/stabilization.html#when-theres-const-involved)
I am treating this as a [partial stabilization](https://std-dev-guide.rust-lang.org/development/stabilization.html#partial-stabilizations) as it shares a tracking issue (and is rather small), so directly opening the partial stabilization PR for the subset (feature `const_int_from_str`) being stabilized.
- [x] ping Constant Evaluation WG
- [x] no unsafe involved
- [x] no `#[allow_internal_unstable]`
- [ ] usage of `intrinsic::const_eval_select` rust-lang/rust#124625 in `from_str_radix_assert` to change the error message between compile-time and run-time
- [ ] [rust-labg/libs-api FCP](https://github.com/rust-lang/rust/pull/124941#issuecomment-2207021921)
Add a `.finish_non_exhaustive()` method to `DebugTuple`, `DebugSet`,
`DebugList`, and `DebugMap`. This indicates that the structures have
remaining items with `..`.
This implements the ACP at
<https://github.com/rust-lang/libs-team/issues/248>.