Implement raw lifetimes and labels (`'r#ident`)
This PR does two things:
1. Reserve lifetime prefixes, e.g. `'prefix#lt` in edition 2021.
2. Implements raw lifetimes, e.g. `'r#async` in edition 2021.
This PR additionally extends the `keyword_idents_2024` lint to also check lifetimes.
cc `@traviscross`
r? parser
Make `Ty::boxed_ty` return an `Option`
Looks like a good place to use Rust's type system.
---
Most of 4ac7bcbaad/compiler/rustc_middle/src/ty/sty.rs (L971-L1963) looks like it could be moved to `TyKind` (then I guess `Ty` should be made to deref to `TyKind`).
Deny imports of `rustc_type_ir::inherent` outside of type ir + new trait solver
We shouldn't encourage using `rustc_type_ir::inherent` outside of the new solver[^1], though this can happen by accident due to rust-analyzer, for example. See https://github.com/rust-lang/rust/pull/127537#discussion_r1733813842 for an example in practice.
r? fmease
[^1]: Unless we go the fully radical approach of always using these inherent methods everywhere in favor of inherent methods, which would be a major overhaul of the compiler, IMO. I don't really want to consider that possibility right now, tho.
Rewrite lint_expectations in a single pass.
This PR aims at reducing the perf regression from https://github.com/rust-lang/rust/pull/120924#issuecomment-2202486203 with drive-by simplifications.
Basically, instead of using the lint level builder, which is slow, this PR splits `lint_expectations` logic in 2:
- listing the `LintExpectations` is done in `shallow_lint_levels_on`, on a per-owner basis;
- building the unstable->stable expectation id map is done by iterating on attributes.
r? ghost for perf
Stop using `ty::GenericPredicates` for non-predicates_of queries
`GenericPredicates` is a struct of several parts: A list of of an item's own predicates, and a parent def id (and some effects related stuff, but ignore that since it's kinda irrelevant). When instantiating these generic predicates, it calls `predicates_of` on the parent and instantiates its predicates, and appends the item's own instantiated predicates too:
acb4e8b625/compiler/rustc_middle/src/ty/generics.rs (L407-L413)
Notice how this should result in a recursive set of calls to `predicates_of`... However, `GenericPredicates` is *also* misused by a bunch of *other* queries as a convenient way of passing around a list of predicates. For these queries, we don't ever set the parent def id of the `GenericPredicates`, but if we did, then this would be very easy to mistakenly call `predicates_of` instead of some other intended parent query.
Given that footgun, and the fact that we don't ever even *use* the parent def id in the `GenericPredicates` returned from queries like `explicit_super_predicates_of`, It really has no benefit over just returning `&'tcx [(Clause<'tcx>, Span)]`.
This PR additionally opts to wrap the results of `EarlyBinder`, as we've tended to use that in the return type of these kinds of queries to properly convey that the user has params to deal with, and it also gives a convenient way of iterating over a slice of things after instantiating.
Tie `impl_trait_overcaptures` lint to Rust 2024
The `impl_trait_overcaptures` lint is part of the migration to Rust 2024 and the Lifetime Capture Rules 2024. Now that we've stabilized precise capturing (RFC 3617), let's tie this lint to the `rust_2024_compatibility` lint group.
Tracking:
- https://github.com/rust-lang/rust/issues/117587
r? `@compiler-errors`
The `impl_trait_overcaptures` lint is part of the migration to Rust
2024 and the Lifetime Capture Rules 2024. Now that we've stabilized
precise capturing (RFC 3617), let's tie this lint to the
`rust_2024_compatibility` lint group.
Add a special case for `CStr`/`CString` in the `improper_ctypes` lint
Revives #120176. Just needed to bless a test and fix an argument, but seemed reasonable to me otherwise.
Instead of saying to "consider adding a `#[repr(C)]` or `#[repr(transparent)]` attribute to this struct", we now tell users to "Use `*const ffi::c_char` instead, and pass the value from `CStr::as_ptr()`" when the type involved is a `CStr` or a `CString`.
The suggestion is not made for `&mut CString` or `*mut CString`.
r? ``````@cjgillot`````` (since you were the reviewer of the original PR #120176, but feel free to reroll)
make writes_through_immutable_pointer a hard error
This turns the lint added in https://github.com/rust-lang/rust/pull/118324 into a hard error. This has been reported in cargo's future-compat reports since Rust 1.76 (released in February). Given that const_mut_refs is still unstable, it should be impossible to even hit this error on stable: we did accidentally stabilize some functions that can cause this error, but that got reverted in https://github.com/rust-lang/rust/pull/117905. Still, let's do a crater run just to be sure.
Given that this should only affect unstable code, I don't think it needs an FCP, but let's Cc ``@rust-lang/lang`` anyway -- any objection to making this unambiguous UB into a hard error during const-eval? This can be viewed as part of https://github.com/rust-lang/rust/pull/129195 which is already nominated for discussion.
Rollup of 9 pull requests
Successful merges:
- #128511 (Document WebAssembly target feature expectations)
- #129243 (do not build `cargo-miri` by default on stable channel)
- #129263 (Add a missing compatibility note in the 1.80.0 release notes)
- #129276 (Stabilize feature `char_indices_offset`)
- #129350 (adapt integer comparison tests for LLVM 20 IR changes)
- #129408 (Fix handling of macro arguments within the `dropping_copy_types` lint)
- #129426 (rustdoc-search: use tighter json for names and parents)
- #129437 (Fix typo in a help diagnostic)
- #129457 (kobzol vacation)
r? `@ghost`
`@rustbot` modify labels: rollup
Fix handling of macro arguments within the `dropping_copy_types` lint
This PR fixes the handling of spans with different context (aka macro arguments) than the primary expression within the different `{drop,forget}ing_copy_types` and `{drop,forget}ing_references` lints.
<details>
<summary>Before</summary>
```
warning: calls to `std::mem::drop` with a value that implements `Copy` does nothing
--> drop_writeln.rs:5:5
|
5 | drop(writeln!(&mut msg, "test"));
| ^^^^^--------------------------^
| |
| argument has type `Result<(), std::fmt::Error>`
|
= note: `#[warn(dropping_copy_types)]` on by default
help: use `let _ = ...` to ignore the expression or result
--> /home/[..]/.rustup/toolchains/nightly-x86_64-unknown-linux-gnu/lib/rustlib/src/rust/library/core/src/macros/mod.rs:688:9
|
68| let _ =
| ~~~~~~~
```
</details>
<details>
<summary>With this PR</summary>
```
warning: calls to `std::mem::drop` with a value that implements `Copy` does nothing
--> drop_writeln.rs:5:5
|
5 | drop(writeln!(&mut msg, "test"));
| ^^^^^--------------------------^
| |
| argument has type `Result<(), std::fmt::Error>`
|
= note: `#[warn(dropping_copy_types)]` on by default
help: use `let _ = ...` to ignore the expression or result
|
5 - drop(writeln!(&mut msg, "test"));
5 + let _ = writeln!(&mut msg, "test");
|
```
</details>
``````@rustbot`````` label +L-dropping_copy_types
Improve diagnostic-related lints: `untranslatable_diagnostic` & `diagnostic_outside_of_impl`
Summary:
- Made `untranslatable_diagnostic` point to problematic arguments instead of the function call
(I found this misleading while working on some `A-translation` PRs: my first impression was that
the methods themselves were not translation-aware and needed to be changed,
while in reality the problem was with the hardcoded strings passed as arguments).
- Made the shared pass of `untranslatable_diagnostic` & `diagnostic_outside_of_impl` more efficient.
`@rustbot` label D-imprecise-spans A-translation
Use `bool` in favor of `Option<()>` for diagnostics
We originally only supported `Option<()>` for optional notes/labels, but we now support `bool`. Let's use that, since it usually leads to more readable code.
I'm not removing the support from the derive macro, though I guess we could error on it... 🤔
Stabilize opaque type precise capturing (RFC 3617)
This PR partially stabilizes opaque type *precise capturing*, which was specified in [RFC 3617](https://github.com/rust-lang/rfcs/pull/3617), and whose syntax was amended by FCP in [#125836](https://github.com/rust-lang/rust/issues/125836).
This feature, as stabilized here, gives us a way to explicitly specify the generic lifetime parameters that an RPIT-like opaque type captures. This solves the problem of overcapturing, for lifetime parameters in these opaque types, and will allow the Lifetime Capture Rules 2024 ([RFC 3498](https://github.com/rust-lang/rfcs/pull/3498)) to be fully stabilized for RPIT in Rust 2024.
### What are we stabilizing?
This PR stabilizes the use of a `use<'a, T>` bound in return-position impl Trait opaque types. Such a bound fully specifies the set of generic parameters captured by the RPIT opaque type, entirely overriding the implicit default behavior. E.g.:
```rust
fn does_not_capture<'a, 'b>() -> impl Sized + use<'a> {}
// ~~~~~~~~~~~~~~~~~~~~
// This RPIT opaque type does not capture `'b`.
```
The way we would suggest thinking of `impl Trait` types *without* an explicit `use<..>` bound is that the `use<..>` bound has been *elided*, and that the bound is filled in automatically by the compiler according to the edition-specific capture rules.
All non-`'static` lifetime parameters, named (i.e. non-APIT) type parameters, and const parameters in scope are valid to name, including an elided lifetime if such a lifetime would also be valid in an outlives bound, e.g.:
```rust
fn elided(x: &u8) -> impl Sized + use<'_> { x }
```
Lifetimes must be listed before type and const parameters, but otherwise the ordering is not relevant to the `use<..>` bound. Captured parameters may not be duplicated. For now, only one `use<..>` bound may appear in a bounds list. It may appear anywhere within the bounds list.
### How does this differ from the RFC?
This stabilization differs from the RFC in one respect: the RFC originally specified `use<'a, T>` as syntactically part of the RPIT type itself, e.g.:
```rust
fn capture<'a>() -> impl use<'a> Sized {}
```
However, settling on the final syntax was left as an open question. T-lang later decided via FCP in [#125836](https://github.com/rust-lang/rust/issues/125836) to treat `use<..>` as a syntactic bound instead, e.g.:
```rust
fn capture<'a>() -> impl Sized + use<'a> {}
```
### What aren't we stabilizing?
The key goal of this PR is to stabilize the parts of *precise capturing* that are needed to enable the migration to Rust 2024.
There are some capabilities of *precise capturing* that the RFC specifies but that we're not stabilizing here, as these require further work on the type system. We hope to lift these limitations later.
The limitations that are part of this PR were specified in the [RFC's stabilization strategy](https://rust-lang.github.io/rfcs/3617-precise-capturing.html#stabilization-strategy).
#### Not capturing type or const parameters
The RFC addresses the overcapturing of type and const parameters; that is, it allows for them to not be captured in opaque types. We're not stabilizing that in this PR. Since all in scope generic type and const parameters are implicitly captured in all editions, this is not needed for the migration to Rust 2024.
For now, when using `use<..>`, all in scope type and const parameters must be nameable (i.e., APIT cannot be used) and included as arguments. For example, this is an error because `T` is in scope and not included as an argument:
```rust
fn test<T>() -> impl Sized + use<> {}
//~^ ERROR `impl Trait` must mention all type parameters in scope in `use<...>`
```
This is due to certain current limitations in the type system related to how generic parameters are represented as captured (i.e. bivariance) and how inference operates.
We hope to relax this in the future, and this stabilization is forward compatible with doing so.
#### Precise capturing for return-position impl Trait **in trait** (RPITIT)
The RFC specifies precise capturing for RPITIT. We're not stabilizing that in this PR. Since RPITIT already adheres to the Lifetime Capture Rules 2024, this isn't needed for the migration to Rust 2024.
The effect of this is that the anonymous associated types created by RPITITs must continue to capture all of the lifetime parameters in scope, e.g.:
```rust
trait Foo<'a> {
fn test() -> impl Sized + use<Self>;
//~^ ERROR `use<...>` precise capturing syntax is currently not allowed in return-position `impl Trait` in traits
}
```
To allow this involves a meaningful amount of type system work related to adding variance to GATs or reworking how generics are represented in RPITITs. We plan to do this work separately from the stabilization. See:
- https://github.com/rust-lang/rust/pull/124029
Supporting precise capturing for RPITIT will also require us to implement a new algorithm for detecting refining capture behavior. This may involve looking through type parameters to detect cases where the impl Trait type in an implementation captures fewer lifetimes than the corresponding RPITIT in the trait definition, e.g.:
```rust
trait Foo {
fn rpit() -> impl Sized + use<Self>;
}
impl<'a> Foo for &'a () {
// This is "refining" due to not capturing `'a` which
// is implied by the trait's `use<Self>`.
fn rpit() -> impl Sized + use<>;
// This is not "refining".
fn rpit() -> impl Sized + use<'a>;
}
```
This stabilization is forward compatible with adding support for this later.
### The technical details
This bound is purely syntactical and does not lower to a [`Clause`](https://doc.rust-lang.org/1.79.0/nightly-rustc/rustc_middle/ty/type.ClauseKind.html) in the type system. For the purposes of the type system (and for the types team's curiosity regarding this stabilization), we have no current need to represent this as a `ClauseKind`.
Since opaques already capture a variable set of lifetimes depending on edition and their syntactical position (e.g. RPIT vs RPITIT), a `use<..>` bound is just a way to explicitly rather than implicitly specify that set of lifetimes, and this only affects opaque type lowering from AST to HIR.
### FCP plan
While there's much discussion of the type system here, the feature in this PR is implemented internally as a transformation that happens before lowering to the type system layer. We already support impl Trait types partially capturing the in scope lifetimes; we just currently only expose that implicitly.
So, in my (errs's) view as a types team member, there's nothing for types to weigh in on here with respect to the implementation being stabilized, and I'd suggest a lang-only proposed FCP (though we'll of course CC the team below).
### Authorship and acknowledgments
This stabilization report was coauthored by compiler-errors and TC.
TC would like to acknowledge the outstanding and speedy work that compiler-errors has done to make this feature happen.
compiler-errors thanks TC for authoring the RFC, for all of his involvement in this feature's development, and pushing the Rust 2024 edition forward.
### Open items
We're doing some things in parallel here. In signaling the intention to stabilize, we want to uncover any latent issues so we can be sure they get addressed. We want to give the maximum time for discussion here to happen by starting it while other remaining miscellaneous work proceeds. That work includes:
- [x] Look into `syn` support.
- https://github.com/dtolnay/syn/issues/1677
- https://github.com/dtolnay/syn/pull/1707
- [x] Look into `rustfmt` support.
- https://github.com/rust-lang/rust/pull/126754
- [x] Look into `rust-analyzer` support.
- https://github.com/rust-lang/rust-analyzer/issues/17598
- https://github.com/rust-lang/rust-analyzer/pull/17676
- [x] Look into `rustdoc` support.
- https://github.com/rust-lang/rust/issues/127228
- https://github.com/rust-lang/rust/pull/127632
- https://github.com/rust-lang/rust/pull/127658
- [x] Suggest this feature to RfL (a known nightly user).
- [x] Add a chapter to the edition guide.
- https://github.com/rust-lang/edition-guide/pull/316
- [x] Update the Reference.
- https://github.com/rust-lang/reference/pull/1577
### (Selected) implementation history
* https://github.com/rust-lang/rfcs/pull/3498
* https://github.com/rust-lang/rfcs/pull/3617
* https://github.com/rust-lang/rust/pull/123468
* https://github.com/rust-lang/rust/issues/125836
* https://github.com/rust-lang/rust/pull/126049
* https://github.com/rust-lang/rust/pull/126753Closes#123432.
cc `@rust-lang/lang` `@rust-lang/types`
`@rustbot` labels +T-lang +I-lang-nominated +A-impl-trait +F-precise_capturing
Tracking:
- https://github.com/rust-lang/rust/issues/123432
----
For the compiler reviewer, I'll leave some inline comments about diagnostics fallout :^)
r? compiler
Use `impl PartialEq<TokenKind> for Token` more.
This lets us compare a `Token` with a `TokenKind`. It's used a lot, but can be used even more, avoiding the need for some `.kind` uses.
r? `@spastorino`
Shrink `TyKind::FnPtr`.
By splitting the `FnSig` within `TyKind::FnPtr` into `FnSigTys` and `FnHeader`, which can be packed more efficiently. This reduces the size of the hot `TyKind` type from 32 bytes to 24 bytes on 64-bit platforms. This reduces peak memory usage by a few percent on some benchmarks. It also reduces cache misses and page faults similarly, though this doesn't translate to clear cycles or wall-time improvements on CI.
r? `@compiler-errors`
Use more slice patterns inside the compiler
Nothing super noteworthy. Just replacing the common 'fragile' pattern of "length check followed by indexing or unwrap" with slice patterns for legibility and 'robustness'.
r? ghost
1. Decouple them.
2. Make logic around `diagnostic_outside_of_impl`'s early exits simpler.
3. Make `untranslatable_diagnostic` run one loop instead of two
and not allocate an intermediate vec.
4. Overall, reduce the amount of code executed
when the lints do not end up firing.
By splitting the `FnSig` within `TyKind::FnPtr` into `FnSigTys` and
`FnHeader`, which can be packed more efficiently. This reduces the size
of the hot `TyKind` type from 32 bytes to 24 bytes on 64-bit platforms.
This reduces peak memory usage by a few percent on some benchmarks. It
also reduces cache misses and page faults similarly, though this doesn't
translate to clear cycles or wall-time improvements on CI.
Rollup of 8 pull requests
Successful merges:
- #128221 (Add implied target features to target_feature attribute)
- #128261 (impl `Default` for collection iterators that don't already have it)
- #128353 (Change generate-copyright to generate HTML, with cargo dependencies included)
- #128679 (codegen: better centralize function declaration attribute computation)
- #128732 (make `import.vis` is immutable)
- #128755 (Integrate crlf directly into related test file instead via of .gitattributes)
- #128772 (rustc_codegen_ssa: Set architecture for object crate for 32-bit SPARC)
- #128782 (unused_parens: do not lint against parens around &raw)
r? `@ghost`
`@rustbot` modify labels: rollup
Instead of saying to "consider adding a `#[repr(C)]` or
`#[repr(transparent)]` attribute to this struct", we now tell users to
"Use `*const ffi::c_char` instead, and pass the value from
`CStr::as_ptr()`" when the type involved is a `CStr` or a `CString`.
Co-authored-by: Jieyou Xu <jieyouxu@outlook.com>
Rollup of 7 pull requests
Successful merges:
- #123813 (Add `REDUNDANT_IMPORTS` lint for new redundant import detection)
- #126697 ([RFC] mbe: consider the `_` in 2024 an expression)
- #127159 (match lowering: Hide `Candidate` from outside the lowering algorithm)
- #128244 (Peel off explicit (or implicit) deref before suggesting clone on move error in borrowck, remove some hacks)
- #128431 (Add myself as VxWorks target maintainer for reference)
- #128438 (Add special-case for [T, 0] in dropck_outlives)
- #128457 (Fix docs for OnceLock::get_mut_or_init)
r? `@ghost`
`@rustbot` modify labels: rollup
Support ?Trait bounds in supertraits and dyn Trait under a feature gate
This patch allows `maybe` polarity bounds under a feature gate. The only language change here is that corresponding hard errors are replaced by feature gates. Example:
```rust
#![feature(allow_maybe_polarity)]
...
trait Trait1 : ?Trait { ... } // ok
fn foo(_: Box<(dyn Trait2 + ?Trait)>) {} // ok
fn bar<T: ?Sized + ?Trait>(_: &T) {} // ok
```
Maybe bounds still don't do anything (except for `Sized` trait), however this patch will allow us to [experiment with default auto traits](https://github.com/rust-lang/rust/pull/120706#issuecomment-1934006762).
This is a part of the [MCP: Low level components for async drop](https://github.com/rust-lang/compiler-team/issues/727)
Make it crystal clear what lint `type_alias_bounds` actually signifies
This is part of my work on https://github.com/rust-lang/rust/labels/F-lazy_type_alias ([tracking issue](#112792)).
---
To recap, the lint `type_alias_bounds` detects bounds on generic parameters and where clauses on (eager) type aliases. These bounds should've never been allowed because they are currently neither enforced[^1] at usage sites of type aliases nor thoroughly checked for correctness at definition sites due to the way type aliases are represented in the compiler. Allowing them was an oversight.
Explicitly label this as a known limitation of the type checker/system and establish the experimental feature `lazy_type_alias` as its eventual proper solution.
Where this becomes a bit tricky (for me as a rustc dev) are the "secondary effects" of these bounds whose existence I sadly can't deny. As a matter of fact, type alias bounds do play some small roles during type checking. However, after a lot of thinking over the last two weeks I've come to the conclusion (not without second-guessing myself though) that these use cases should not trump the fact that these bounds are currently *inherently broken*. Therefore the lint `type_alias_bounds` should and will continue to flag bounds that may have subordinate uses.
The two *known* secondary effects are:
1. They may enable the use of "shorthand" associated type paths `T::Assoc` (as opposed to fully qualified paths `<T as Trait>::Assoc`) where `T` is a type param bounded by some trait `Trait` which defines that assoc ty.
2. They may affect the default lifetime of trait object types passed as a type argument to the type alias. That concept is called (trait) object lifetime default.
The second one is negligible, no question asked. The first one however is actually "kinda nice" (for writability) and comes up in practice from time to time.
So why don't I just special-case trait bounds that "define" shorthand assoc type paths as originally planned in #125709?
1. Starting to permit even a tiny subset of bounds would already be enough to send a signal to users that bounds in type aliases have been legitimized and that they can expect to see type alias bounds in the wild from now on (proliferation). This would be actively misleading and dangerous because those bounds don't behave at all like one would expect, they are *not real*[^2]!
1. Let's take `type A<T: Trait> = T::Proj;` for example. Everywhere else in the language `T: Trait` means `T: Trait + Sized`. For type aliases, that's not the case though: `T: Trait` and `T: Trait + ?Sized` for that matter do neither mean `T: Trait + Sized` nor `T: Trait + ?Sized` (for both!). Instead, whether `T` requires `Sized` or not entirely depends on the definition of `Trait`[^2]. Namely, whether or not it is bounded by `Sized`.
2. Given `type A<T: Trait<AssocA = ()>> = T::AssocB;`, while `X: Trait` gets checked given `A<X>` (by virtue of projection wfchecking post alias expansion[^2]), the associated type constraint `AssocA = ()` gets dropped entirely! While we could choose to warn on such cases, it would inevitably lead to a huge pile of special cases.
3. While it's common knowledge that the body / aliased type / RHS of an (eager) type alias does not get checked for well-formedness, I'm not sure if people would realize that that extends to bounds as well. Namely, `type A<T: Trait<[u8]>> = T::Proj;` compiles even if `Trait`'s generic parameter requires `Sized`. Of course, at usage sites `[u8]: Sized` would still end up getting checked[^2], so it's not a huge problem if you have full control over `A`. However, imagine that `A` was actually part of a public API and was never used inside the defining crate (not unreasonable). In such a scenario, downstream users would be presented with an impossible to use type alias! Remember, bounds may grow arbitrarily complex and nuanced in practice.
4. Even if we allowed trait bounds that "define" shorthand assoc type paths, we would still need to continue to warn in cases where the assoc ty comes from a supertrait despite the fact that the shorthand syntax can be used: `type A<T: Sub> = T::Assoc;` does compile given `trait Sub: Super {}` and `trait Super { type Assoc; }`. However, `A<X>` does not enforce `X: Sub`, only `X: Super`[^2]. All that to say, type alias bounds are simply not real and we shouldn't pretend they are!
5. Summarizing the points above, we would be legitimizing bounds that are completely broken!
2. It's infeasible to implement: Due to the lack of `TypeckResults` in `ItemCtxt` (and a way to propagate it to other parts of the compiler), the resolution of type-dependent paths in non-`Body` items (most notably type aliases) is not recoverable from the HIR alone which would be necessary because the information of whether an associated type path (projection) is a shorthand is only present pre&in-HIR and doesn't survive HIR ty lowering. Of course, I could rerun parts of HIR ty lowering inside the lint `type_alias_bounds` (namely, `probe_single_ty_param_bound_for_assoc_ty` which would need to be exposed or alternatively a stripped-down version of it). This likely has a performance impact and introduces complexity. In short, the "benefits" are not worth the costs.
---
* 3rd commit: Update a diagnostic to avoid suggesting type alias bounds
* 4th commit: Flag type alias bounds even if the RHS contains inherent associated types.
* I started to allow them at some point in the past which was not correct (see commit for details)
* 5th commit: Allow type alias bounds if the RHS contains const projections and GCEs are enabled
* (and add a `FIXME(generic_const_exprs)` to be revisited before (M)GCE's stabilization)
* As a matter of fact type alias bounds are enforced in this case because the contained AnonConsts do get checked for well-formedness and crucially they inherit the generics and predicates of their parent item (here: the type alias)
* Remaining commits: Improve the lint `type_alias_bounds` itself
---
Fixes#125789 (sugg diag fix).
Fixes#125709 (wontfix, acknowledgement, sugg diag applic fix).
Fixes#104918 (sugg diag applic fix).
Fixes#100270 (wontfix, acknowledgement, sugg diag applic fix).
Fixes#94398 (true fix).
r? `@compiler-errors` `@oli-obk`
[^1]: From the perspective of the trait solver.
[^2]: Given `type A<T: Trait> = T::Proj;`, the reason why the trait bound "`T: Trait`" gets *seemingly* enforced at usage sites of the type alias `A` is simply because `A<X>` gets expanded to "`<X as Trait>::Proj`" very early on and it's the *expansion* that gets checked for well-formedness, not the type alias reference.
Use `#[rustfmt::skip]` on some `use` groups to prevent reordering.
`use` declarations will be reformatted in #125443. Very rarely, there is a desire to force a group of `use` declarations together in a way that auto-formatting will break up. E.g. when you want a single comment to apply to a group. #126776 dealt with all of these in the codebase, ensuring that no comments intended for multiple `use` declarations would end up in the wrong place. But some people were unhappy with it.
This commit uses `#[rustfmt::skip]` to create these custom `use` groups in an idiomatic way for a few of the cases changed in #126776. This works because rustfmt treats any `use` item annotated with `#[rustfmt::skip]` as a barrier and won't reorder other `use` items around it.
r? `@cuviper`
Implement lint against ambiguous negative literals
This PR implements a lint against ambiguous negative literals with a literal and method calls right after it.
## `ambiguous_negative_literals`
(deny-by-default)
The `ambiguous_negative_literals` lint checks for cases that are confusing between a negative literal and a negation that's not part of the literal.
### Example
```rust,compile_fail
-1i32.abs(); // equals -1, while `(-1i32).abs()` equals 1
```
### Explanation
Method calls take precedence over unary precedence. Setting the precedence explicitly makes the code clearer and avoid potential bugs.
<details>
<summary>Old proposed lint</summary>
## `ambiguous_unary_precedence`
(deny-by-default)
The `ambiguous_unary_precedence` lint checks for use the negative unary operator with a literal and method calls.
### Example
```rust
-1i32.abs(); // equals -1, while `(-1i32).abs()` equals 1
```
### Explanation
Unary operations take precedence on binary operations and method calls take precedence over unary precedence. Setting the precedence explicitly makes the code clearer and avoid potential bugs.
</details>
-----
Note: This is a strip down version of https://github.com/rust-lang/rust/pull/117161, without the binary op precedence.
Fixes https://github.com/rust-lang/rust/issues/117155
`@rustbot` labels +I-lang-nominated
cc `@scottmcm`
r? compiler
Rollup of 7 pull requests
Successful merges:
- #121533 (Handle .init_array link_section specially on wasm)
- #127825 (Migrate `macos-fat-archive`, `manual-link` and `archive-duplicate-names` `run-make` tests to rmake)
- #127891 (Tweak suggestions when using incorrect type of enum literal)
- #127902 (`collect_tokens_trailing_token` cleanups)
- #127928 (Migrate `lto-smoke-c` and `link-path-order` `run-make` tests to rmake)
- #127935 (Change `binary_asm_labels` to only fire on x86 and x86_64)
- #127953 ([compiletest] Search *.a when getting dynamic libraries on AIX)
r? `@ghost`
`@rustbot` modify labels: rollup
Represent type-level consts with new-and-improved `hir::ConstArg`
### Summary
This is a step toward `min_generic_const_exprs`. We now represent all const
generic arguments using an enum that differentiates between const *paths*
(temporarily just bare const params) and arbitrary anon consts that may perform
computations. This will enable us to cleanly implement the `min_generic_const_args`
plan of allowing the use of generics in paths used as const args, while
disallowing their use in arbitrary anon consts. Here is a summary of the salient
aspects of this change:
- Add `current_def_id_parent` to `LoweringContext`
This is needed to track anon const parents properly once we implement
`ConstArgKind::Path` (which requires moving anon const def-creation
outside of `DefCollector`).
- Create `hir::ConstArgKind` enum with `Path` and `Anon` variants. Use it in the
existing `hir::ConstArg` struct, replacing the previous `hir::AnonConst` field.
- Use `ConstArg` for all instances of const args. Specifically, use it instead
of `AnonConst` for assoc item constraints, array lengths, and const param
defaults.
- Some `ast::AnonConst`s now have their `DefId`s created in
rustc_ast_lowering rather than `DefCollector`. This is because in some
cases they will end up becoming a `ConstArgKind::Path` instead, which
has no `DefId`. We have to solve this in a hacky way where we guess
whether the `AnonConst` could end up as a path const since we can't
know for sure until after name resolution (`N` could refer to a free
const or a nullary struct). If it has no chance as being a const
param, then we create a `DefId` in `DefCollector` -- otherwise we
decide during ast_lowering. This will have to be updated once all path
consts use `ConstArgKind::Path`.
- We explicitly use `ConstArgHasType` for array lengths, rather than
implicitly relying on anon const type feeding -- this is due to the
addition of `ConstArgKind::Path`.
- Some tests have their outputs changed, but the changes are for the
most part minor (including removing duplicate or almost-duplicate
errors). One test now ICEs, but it is for an incomplete, unstable
feature and is now tracked at https://github.com/rust-lang/rust/issues/127009.
### Followup items post-merge
- Use `ConstArgKind::Path` for all const paths, not just const params.
- Fix (no github dont close this issue) #127009
- If a path in generic args doesn't resolve as a type, try to resolve as a const
instead (do this in rustc_resolve). Then remove the special-casing from
`rustc_ast_lowering`, so that all params will automatically be lowered as
`ConstArgKind::Path`.
- (?) Consider making `const_evaluatable_unchecked` a hard error, or at least
trying it in crater
r? `@BoxyUwU`
Change `binary_asm_labels` to only fire on x86 and x86_64
In <https://github.com/rust-lang/rust/pull/126922>, the `binary_asm_labels` lint was added which flags labels such as `0:` and `1:`. Before that change, LLVM was giving a confusing error on x86/x86_64 because of an incorrect interpretation.
However, targets other than x86 and x86_64 never had the error message and have not been a problem. This means that the lint was causing code that previously worked to start failing (e.g. `compiler_builtins`), rather than only providing a more clear messages where there has always been an error.
Adjust the lint to only fire on x86 and x86_64 assembly to avoid this regression.
Also update the help message.
Fixes: https://github.com/rust-lang/rust/issues/127821
`use` declarations will be reformatted in #125443. Very rarely, there is
a desire to force a group of `use` declarations together in a way that
auto-formatting will break up. E.g. when you want a single comment to
apply to a group. #126776 dealt with all of these in the codebase,
ensuring that no comments intended for multiple `use` declarations would
end up in the wrong place. But some people were unhappy with it.
This commit uses `#[rustfmt::skip]` to create these custom `use` groups
in an idiomatic way for a few of the cases changed in #126776. This
works because rustfmt treats any `use` item annotated with
`#[rustfmt::skip]` as a barrier and won't reorder other `use` items
around it.
The link pointed to a closed issue. Create a new one and point the link
to it.
Also add a help message to hint what change the user could make.
Fixes: https://github.com/rust-lang/rust/issues/127821
In <https://github.com/rust-lang/rust/pull/126922>, the
`binary_asm_labels` lint was added which flags labels such as `0:` and
`1:`. Before that change, LLVM was giving a confusing error on
x86/x86_64 because of an incorrect interpretation.
However, targets other than x86 and x86_64 never had the error message
and have not been a problem. This means that the lint was causing code
that previously worked to start failing (e.g. `compiler_builtins`),
rather than only providing a more clear messages where there has always
been an error.
Adjust the lint to only fire on x86 and x86_64 assembly to avoid this
regression.
There are some comments describing multiple subsequent `use` items. When
the big `use` reformatting happens some of these `use` items will be
reordered, possibly moving them away from the comment. With this
additional level of formatting it's not really feasible to have comments
of this type. This commit removes them in various ways:
- merging separate `use` items when appropriate;
- inserting blank lines between the comment and the first `use` item;
- outright deletion (for comments that are relatively low-value);
- adding a separate "top-level" comment.
We also entirely skip formatting for four library files that contain
nothing but `pub use` re-exports, where reordering would be painful.
add lint for inline asm labels that look like binary
fixes#94426
Due to a bug/feature in LLVM, labels composed of only the digits `0` and `1` can sometimes be confused with binary literals, even if a binary literal would not be valid in that position.
This PR adds detection for such labels and also as a drive-by change, adds a note to cases such as `asm!(include_str!("file"))` that the label that it found came from an expansion of a macro, it wasn't found in the source code.
I expect this PR to upset some people that were using labels `0:` or `1:` without issue because they never hit the case where LLVM got it wrong, but adding a heuristic to the lint to prevent this is not feasible - it would involve writing a whole assembly parser for every target that we have assembly support for.
[zulip discussion](https://rust-lang.zulipchat.com/#narrow/stream/238009-t-compiler.2Fmeetings/topic/.5Bweekly.5D.202024-06-20/near/445870628)
r? ``@estebank``
Implement simple, unstable lint to suggest turning closure-of-async-block into async-closure
We want to eventually suggest people to turn `|| async {}` to `async || {}`. This begins doing that. It's a pretty rudimentary lint, but I wanted to get something down so I wouldn't lose the code.
Tracking:
* #62290
Update `f16`/`f128` FIXMEs that needed `(NEG_)INFINITY`
Just a small fix to the pattern matching tests now that we can. Also contains a small unrelated comment tweak.
This is adding a migration lint for the current (in the 2021 edition and previous)
to move expr to expr_2021 from expr
Co-Developed-by: Eric Holk
Signed-off-by: Vincenzo Palazzo <vincenzopalazzodev@gmail.com>
Improve well known value check-cfg diagnostic for the standard library
This PR adjust the current logic for hidding the rustc/Cargo suggestion to add a value to a well-known name to exclude the standard library and rustc crates.
This is done in order to improve the contributor experience, in particular when adding a new target, which often requires adding some cfgs like `target_os` which may not be available yet in stage0.
<details>
The diagnostic code would look like this.
```text
error: unexpected `cfg` condition value: `blable`
--> library/core/src/lib.rs:369:7
|
369 | #[cfg(target_os = "blable")]
| ^^^^^^^^^^^^^^^^^^^^
|
= note: expected values for `target_os` are: `aix`, `android`, `cuda`, `dragonfly`, `emscripten`, `espidf`, `freebsd`, `fuchsia`, `haiku`, `hermit`, `horizon`, `hurd`, `illumos`, `ios`, `l4re`, `linux`, `macos`, `netbsd`, `none`, `nto`, `openbsd`, `psp`, `redox`, `solaris`, `solid_asp3`, `teeos`, `tvos`, `uefi`, `unknown`, `visionos`, `vita`, `vxworks`, `wasi`, `watchos`, and `windows` and 2 more
= help: consider using a Cargo feature instead
= help: or consider adding in `Cargo.toml` the `check-cfg` lint config for the lint:
[lints.rust]
unexpected_cfgs = { level = "warn", check-cfg = ['cfg(target_os, values("blable"))'] }
= help: or consider adding `println!("cargo::rustc-check-cfg=cfg(target_os, values(\"blable\"))");` to the top of the `build.rs`
= note: see <https://doc.rust-lang.org/nightly/rustc/check-cfg/cargo-specifics.html> for more information about checking conditional configuration
= note: `-D unexpected-cfgs` implied by `-D warnings`
= help: to override `-D warnings` add `#[allow(unexpected_cfgs)]`
```
</details>
Remove the `box_pointers` lint.
As the comment says, this lint "is mostly historical, and not particularly useful". It's not worth keeping it around.
r? ``@estebank``
Rename `super_predicates_of` and similar queries to `explicit_*` to note that they're not elaborated
Rename:
* `super_predicates_of` -> `explicit_super_predicates_of`
* `implied_predicates_of` -> `explicit_implied_predicates_of`
* `supertraits_containing_assoc_item` -> `explicit_supertraits_containing_assoc_item`
This makes it clearer that, unlike (for example) [`TyCtxt::super_traits_of`](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/context/struct.TyCtxt.html#method.super_traits_of), we don't automatically elaborate this set of predicates.
r? ``@lcnr`` or ``@oli-obk`` or someone from t-types idc
Switch back `non_local_definitions` lint to allow-by-default
This PR switch back (again) the `non_local_definitions` lint to allow-by-default as T-lang is requesting some (major) changes in the lint inner workings in https://github.com/rust-lang/rust/issues/126768#issuecomment-2192634762.
This PR will need to be beta-backported, as the lint is currently warn-by-default in beta.
ast: Standardize visiting order for attributes and node IDs
This should only affect `macro_rules` scopes and order of diagnostics.
Also add a deprecation lint for `macro_rules` called outside of their scope, like in https://github.com/rust-lang/rust/issues/124535.
Suggest using a standalone doctest for non-local impl defs
This PR tweaks the lint output of the `non_local_definitions` lint to suggest using a standalone doctest instead of a moving the `impl` def to an impossible place as was already done with `macro_rules!` case in https://github.com/rust-lang/rust/pull/124568.
Fixes#126339
r? ```@fmease```
Resolve elided lifetimes in assoc const to static if no other lifetimes are in scope
Implements the change to elided lifetime resolution in *associated consts* subject to FCP here: https://github.com/rust-lang/rust/issues/125190#issue-2301532282
Specifically, walk the enclosing lifetime ribs in an associated const, and if we find no other lifetimes, then resolve to `'static`.
Also make it work for traits, but don't lint -- just give a hard error in that case.
Rollup of 16 pull requests
Successful merges:
- #123374 (DOC: Add FFI example for slice::from_raw_parts())
- #124514 (Recommend to never display zero disambiguators when demangling v0 symbols)
- #125978 (Cleanup: HIR ty lowering: Consolidate the places that do assoc item probing & access checking)
- #125980 (Nvptx remove direct passmode)
- #126187 (For E0277 suggest adding `Result` return type for function when using QuestionMark `?` in the body.)
- #126210 (docs(core): make more const_ptr doctests assert instead of printing)
- #126249 (Simplify `[T; N]::try_map` signature)
- #126256 (Add {{target}} substitution to compiletest)
- #126263 (Make issue-122805.rs big endian compatible)
- #126281 (set_env: State the conclusion upfront)
- #126286 (Make `storage-live.rs` robust against rustc internal changes.)
- #126287 (Update a cranelift patch file for formatting changes.)
- #126301 (Use `tidy` to sort crate attributes for all compiler crates.)
- #126305 (Make PathBuf less Ok with adding UTF-16 then `into_string`)
- #126310 (Migrate run make prefer rlib)
- #126314 (fix RELEASES: we do not support upcasting to auto traits)
r? `@ghost`
`@rustbot` modify labels: rollup
We already do this for a number of crates, e.g. `rustc_middle`,
`rustc_span`, `rustc_metadata`, `rustc_span`, `rustc_errors`.
For the ones we don't, in many cases the attributes are a mess.
- There is no consistency about order of attribute kinds (e.g.
`allow`/`deny`/`feature`).
- Within attribute kind groups (e.g. the `feature` attributes),
sometimes the order is alphabetical, and sometimes there is no
particular order.
- Sometimes the attributes of a particular kind aren't even grouped
all together, e.g. there might be a `feature`, then an `allow`, then
another `feature`.
This commit extends the existing sorting to all compiler crates,
increasing consistency. If any new attribute line is added there is now
only one place it can go -- no need for arbitrary decisions.
Exceptions:
- `rustc_log`, `rustc_next_trait_solver` and `rustc_type_ir_macros`,
because they have no crate attributes.
- `rustc_codegen_gcc`, because it's quasi-external to rustc (e.g. it's
ignored in `rustfmt.toml`).
Spruce up the diagnostics of some early lints
Implement the various "*(note to myself) in a follow-up PR we should turn parts of this message into a subdiagnostic (help msg or even struct sugg)*" drive-by comments I left in #124417 during my review.
For context, before #124417, only a few early lints touched/decorated/customized their diagnostic because the former API made it a bit awkward. Likely because of that, things that should've been subdiagnostics were just crammed into the primary message. This PR rectifies this.
Don't warn on fields in the `unreachable_pub` lint
This PR restrict the `unreachable_pub` lint by not linting on `pub` fields of `pub(restricted)` structs and unions. This is done because that can quickly clutter the code for an uncertain value, in particular since the "real" visibility is defined by the parent (the struct it-self).
This is meant to address one of the last concern of the `unreachable_pub` lint.
r? ``@petrochenkov``
Convert `proc_macro_back_compat` lint to an unconditional error.
We still check for the `rental`/`allsorts-rental` crates. But now if they are detected we just emit a fatal error, instead of emitting a warning and providing alternative behaviour.
The original "hack" implementing alternative behaviour was added in #73345.
The lint was added in #83127.
The tracking issue is #83125.
The direct motivation for the change is that providing the alternative behaviour is interfering with #125174 and follow-on work.
r? ``@estebank``
Align `Term` methods with `GenericArg` methods, add `Term::expect_*`
* `Term::ty` -> `Term::as_type`.
* `Term::ct` -> `Term::as_const`.
* Adds `Term::expect_type` and `Term::expect_const`, and uses them in favor of `.ty().unwrap()`, etc.
I could also shorten these to `as_ty` and then do `GenericArg::as_ty` as well, but I do think the `as_` is important to signal that this is a conversion method, and not a getter, like `Const::ty` is.
r? types
It has a clumsy type, with repeated `&'a [LintId]`, and sometimes
requires an empty string that isn't used in the `Err`+`None` case.
This commit splits it into two variants.
Make `body_owned_by` return the `Body` instead of just the `BodyId`
fixes#125677
Almost all `body_owned_by` callers immediately called `body`, too, so just return `Body` directly.
This makes the inline-const query feeding more robust, as all calls to `body_owned_by` will now yield a body for inline consts, too.
I have not yet figured out a good way to make `tcx.hir().body()` return an inline-const body, but that can be done as a follow-up
A small diagnostic improvement for dropping_copy_types
For a value `m` which implements `Copy` trait, `drop(m);` does nothing.
We now suggest user to ignore it by a abstract and general note: `let _ = ...`.
I think we can give a clearer note here: `let _ = m;`
fixes#125189
<!--
If this PR is related to an unstable feature or an otherwise tracked effort,
please link to the relevant tracking issue here. If you don't know of a related
tracking issue or there are none, feel free to ignore this.
This PR will get automatically assigned to a reviewer. In case you would like
a specific user to review your work, you can assign it to them by using
r? <reviewer name>
-->
We still check for the `rental`/`allsorts-rental` crates. But now if
they are detected we just emit a fatal error, instead of emitting a
warning and providing alternative behaviour.
The original "hack" implementing alternative behaviour was added
in #73345.
The lint was added in #83127.
The tracking issue is #83125.
The direct motivation for the change is that providing the alternative
behaviour is interfering with #125174 and follow-on work.
Uplift `EarlyBinder` into `rustc_type_ir`
We also need to give `EarlyBinder` a `'tcx` param, so that we can carry the `Interner` in the `EarlyBinder` too. This is necessary because otherwise we have an unconstrained `I: Interner` parameter in many of the `EarlyBinder`'s inherent impls.
I also generally think that this is desirable to have, in case we later want to track some state in the `EarlyBinder`.
r? lcnr