Avoid string validation in rustc_serialize, check a marker byte instead
Since the serialization format isn't self-describing we need a way to detect when encoder and decoder don't match up. But for strings it doesn't have to be utf8 validation, which currently does cost a few percent of performance.
Instead we can use a marker byte at the end to be reasonably sure that we're dealing with a string and it wasn't overwritten in some way.
Support AVR for inline asm!
A first pass at support for the AVR platform in inline `asm!`. Passes the initial compiler tests, have not yet done more complete verification.
In particular, the register classes could use a lot more fleshing out, this draft PR so far only includes the most basic.
cc `@Amanieu` `@dylanmckay`
Remove a dead code path.
It is neither documented nor can I see any way it could ever be reached.
Also, no tests fail when turning that arm into an ICE
Fix AnonConst ICE
I am not sure if this is even the correct place to fix this issue, but i went down the path where the generic args came from and i wasn't able to find a clear cause for this down there. But if anybody has a suggestion what i should do, just tell me.
This fixes: https://github.com/rust-lang/rust/issues/91267
We already use the object crate for generating uncompressed .rmeta
metadata object files. This switches the generation of compressed
.rustc object files to use the object crate as well. These have
slightly different requirements in that .rmeta should be completely
excluded from any final compilation artifacts, while .rustc should
be part of shared objects, but not loaded into memory.
The primary motivation for this change is #90326: In LLVM 14, the
current way of setting section flags (and in particular, preventing
the setting of SHF_ALLOC) will no longer work. There are other ways
we could work around this, but switching to the object crate seems
like the most elegant, as we already use it for .rmeta, and as it
makes this independent of the codegen backend. In particular, we
don't need separate handling in codegen_llvm and codegen_gcc.
codegen_cranelift should be able to reuse the implementation as
well, though I have omitted that here, as it is not based on
codegen_ssa.
This change mostly extracts the existing code for .rmeta handling
to allow using it for .rustc as well, and adjust the codegen
infrastructure to handle the metadata object file separately: We
no longer create a backend-specific module for it, and directly
produce the compiled module instead.
This does not fix#90326 by itself yet, as .llvmbc will need to be
handled separately.
When we point at a binding to suggest giving it a type, erase all the
type for ADTs that have been resolved, leaving only the ones that could
not be inferred. For small shallow types this is not a problem, but for
big nested types with lots of params, this can otherwise cause a lot of
unnecessary visual output.
This largely avoids remapping from and to the 'real' indices, with the exception
of predecessor lookup and the final merge back, and is conceptually better.
As the paper indicates, the unprocessed vertices in the DFS tree and processed
vertices are disjoint, and we can use them in the same space, tracking only the index
of the split.
This replaces the previous implementation with the simple variant of
Lengauer-Tarjan, which performs better in the general case. Performance on the
keccak benchmark is about equivalent between the two, but we don't see
regressions (and indeed see improvements) on other benchmarks, even on a
partially optimized implementation.
The implementation here follows that of the pseudocode in "Linear-Time
Algorithms for Dominators and Related Problems" thesis by Loukas Georgiadis. The
next few commits will optimize the implementation as suggested in the thesis.
Several related works are cited in the comments within the implementation, as
well.
Implement the simple Lengauer-Tarjan algorithm
This replaces the previous implementation (from #34169), which has not been
optimized since, with the simple variant of Lengauer-Tarjan which performs
better in the general case. A previous attempt -- not kept in commit history --
attempted a replacement with a bitset-based implementation, but this led to
regressions on perf.rust-lang.org benchmarks and equivalent wins for the keccak
benchmark, so was rejected.
The implementation here follows that of the pseudocode in "Linear-Time
Algorithms for Dominators and Related Problems" thesis by Loukas Georgiadis. The
next few commits will optimize the implementation as suggested in the thesis.
Several related works are cited in the comments within the implementation, as
well.
On the keccak benchmark, we were previously spending 15% of our cycles computing
the NCA / intersect function; this function is quite expensive, especially on
modern CPUs, as it chases pointers on every iteration in a tight loop. With this
commit, we spend ~0.05% of our time in dominator computation.
Also add a test case for inserting a semicolon on extern fns.
Without this fix, we got an error like this:
error: expected one of `->`, `where`, or `{`, found `}`
--> chk.rs:3:1
|
2 | fn foo()
| --- - expected one of `->`, `where`, or `{`
| |
| while parsing this `fn`
3 | }
| ^ unexpected token
Since this is inside an extern block, you're required to write function
prototypes with no body. This fixes a regression, and adds a test case
for it.
since the serialization format isn't self-describing we need a way to detect
when encoder and decoder don't match up. but that doesn't have to
be utf8 validation for strings, which does cost a few % of performance.
Instead we can use a marker byte at the end to be reasonably
sure that we're dealing with a string and it wasn't overwritten in some
way.
Stop enabling `in_band_lifetimes` in rustc_data_structures
There's a conversation started in the tracking issue about possibly unaccepting `in_band_lifetimes`, but it's used heavily in the compiler, and thus there'd need to be a bunch of PRs like this if that were to happen.
So here's one to see how much of an impact it has. For this crate, at least, it doesn't seem like in-band was a big win -- about half the places that were using it didn't even need a named lifetime.
(Oh, and I removed `nll` while I was here too, since it didn't seem needed. Let me know if I should put that back.)
r? `@petrochenkov`
Delete duplicated helpers from HIR printer
These functions (`cbox`, `nbsp`, `word_nbsp`, `head`, `bopen`, `space_if_not_bol`, `break_offset_if_not_bol`, `synth_comment`, `maybe_print_trailing_comment`, `print_remaining_comments`) are duplicated with identical behavior across the AST printer and HIR printer, but are not specific to AST or HIR data structures.
There's a conversation in the tracking issue about possibly unaccepting `in_band_lifetimes`, but it's used heavily in the compiler, and thus there'd need to be a bunch of PRs like this if that were to happen.
So here's one to see how much of an impact it has.
(Oh, and I removed `nll` while I was here too, since it didn't seem needed. Let me know if I should put that back.)
Add support for riscv64gc-unknown-freebsd
For https://doc.rust-lang.org/nightly/rustc/target-tier-policy.html#tier-3-target-policy:
* A tier 3 target must have a designated developer or developers (the "target maintainers") on record to be CCed when issues arise regarding the target. (The mechanism to track and CC such developers may evolve over time.)
For all Rust targets on FreeBSD, it's [rust@FreeBSD.org](mailto:rust@FreeBSD.org).
* Targets must use naming consistent with any existing targets; for instance, a target for the same CPU or OS as an existing Rust target should use the same name for that CPU or OS. Targets should normally use the same names and naming conventions as used elsewhere in the broader ecosystem beyond Rust (such as in other toolchains), unless they have a very good reason to diverge. Changing the name of a target can be highly disruptive, especially once the target reaches a higher tier, so getting the name right is important even for a tier 3 target.
Done.
* Target names should not introduce undue confusion or ambiguity unless absolutely necessary to maintain ecosystem compatibility. For example, if the name of the target makes people extremely likely to form incorrect beliefs about what it targets, the name should be changed or augmented to disambiguate it.
Done
* Tier 3 targets may have unusual requirements to build or use, but must not create legal issues or impose onerous legal terms for the Rust project or for Rust developers or users.
Done.
* The target must not introduce license incompatibilities.
Done.
* Anything added to the Rust repository must be under the standard Rust license (MIT OR Apache-2.0).
Fine with me.
* The target must not cause the Rust tools or libraries built for any other host (even when supporting cross-compilation to the target) to depend on any new dependency less permissive than the Rust licensing policy. This applies whether the dependency is a Rust crate that would require adding new license exceptions (as specified by the tidy tool in the rust-lang/rust repository), or whether the dependency is a native library or binary. In other words, the introduction of the target must not cause a user installing or running a version of Rust or the Rust tools to be subject to any new license requirements.
Done.
* If the target supports building host tools (such as rustc or cargo), those host tools must not depend on proprietary (non-FOSS) libraries, other than ordinary runtime libraries supplied by the platform and commonly used by other binaries built for the target. For instance, rustc built for the target may depend on a common proprietary C runtime library or console output library, but must not depend on a proprietary code generation library or code optimization library. Rust's license permits such combinations, but the Rust project has no interest in maintaining such combinations within the scope of Rust itself, even at tier 3.
Done.
* Targets should not require proprietary (non-FOSS) components to link a functional binary or library.
Done.
* "onerous" here is an intentionally subjective term. At a minimum, "onerous" legal/licensing terms include but are not limited to: non-disclosure requirements, non-compete requirements, contributor license agreements (CLAs) or equivalent, "non-commercial"/"research-only"/etc terms, requirements conditional on the employer or employment of any particular Rust developers, revocable terms, any requirements that create liability for the Rust project or its developers or users, or any requirements that adversely affect the livelihood or prospects of the Rust project or its developers or users.
Fine with me.
* Neither this policy nor any decisions made regarding targets shall create any binding agreement or estoppel by any party. If any member of an approving Rust team serves as one of the maintainers of a target, or has any legal or employment requirement (explicit or implicit) that might affect their decisions regarding a target, they must recuse themselves from any approval decisions regarding the target's tier status, though they may otherwise participate in discussions.
Ok.
* This requirement does not prevent part or all of this policy from being cited in an explicit contract or work agreement (e.g. to implement or maintain support for a target). This requirement exists to ensure that a developer or team responsible for reviewing and approving a target does not face any legal threats or obligations that would prevent them from freely exercising their judgment in such approval, even if such judgment involves subjective matters or goes beyond the letter of these requirements.
Ok.
* Tier 3 targets should attempt to implement as much of the standard libraries as possible and appropriate (core for most targets, alloc for targets that can support dynamic memory allocation, std for targets with an operating system or equivalent layer of system-provided functionality), but may leave some code unimplemented (either unavailable or stubbed out as appropriate), whether because the target makes it impossible to implement or challenging to implement. The authors of pull requests are not obligated to avoid calling any portions of the standard library on the basis of a tier 3 target not implementing those portions.
std is implemented.
* The target must provide documentation for the Rust community explaining how to build for the target, using cross-compilation if possible. If the target supports running tests (even if they do not pass), the documentation must explain how to run tests for the target, using emulation if possible or dedicated hardware if necessary.
Building is possible the same way as other Rust on FreeBSD targets.
* Tier 3 targets must not impose burden on the authors of pull requests, or other developers in the community, to maintain the target. In particular, do not post comments (automated or manual) on a PR that derail or suggest a block on the PR based on a tier 3 target. Do not send automated messages or notifications (via any medium, including via `@)` to a PR author or others involved with a PR regarding a tier 3 target, unless they have opted into such messages.
Ok.
* Backlinks such as those generated by the issue/PR tracker when linking to an issue or PR are not considered a violation of this policy, within reason. However, such messages (even on a separate repository) must not generate notifications to anyone involved with a PR who has not requested such notifications.
Ok.
* Patches adding or updating tier 3 targets must not break any existing tier 2 or tier 1 target, and must not knowingly break another tier 3 target without approval of either the compiler team or the maintainers of the other tier 3 target.
Ok.
* In particular, this may come up when working on closely related targets, such as variations of the same architecture with different features. Avoid introducing unconditional uses of features that another variation of the target may not have; use conditional compilation or runtime detection, as appropriate, to let each target run code supported by that target.
Ok.
compiler/rustc_target: make m68k-unknown-linux-gnu use the gnu base
This makes the m68k arch match the other GNU/Linux based targets by setting the environment to gnu.
...because alignment is always nonzero.
This helps eliminate redundant runtime alignment checks, when a DST
is a field of a struct whose remaining fields have alignment 1.
Don't suggest types whose inner type is erroneous
Currently, we check if the returned type equals to `tcx.ty_error()` not to emit
erroneous types, but this has a pitfall; for example,
`Option<[type error]> != tcx.ty_error()` holds.
Fixes#91371.
Pretty print empty blocks as {}
**Example:**
```rust
macro_rules! p {
($e:expr) => {
println!("{}", stringify!($e));
};
($i:item) => {
println!("{}", stringify!($i));
};
}
fn main() {
p!(if true {});
p!(struct S {});
}
```
**Before:**
```console
if true { }
struct S {
}
```
**After:**
```console
if true {}
struct S {}
```
This affects [`dbg!`](https://doc.rust-lang.org/std/macro.dbg.html), as well as ecosystem uses of stringify such as in [`anyhow::ensure!`](https://docs.rs/anyhow/1/anyhow/macro.ensure.html). Printing a `{ }` in today's heavily rustfmt'd world comes out looking jarring/sloppy.
Skip reborrows in AbstractConstBuilder
Fixes https://github.com/rust-lang/rust/issues/90455
Temporary fix to prevent confusing diagnostics that refer to implicit borrows and derefs until we allow borrows and derefs on constant expressions.
r? `@oli-obk`
Add a MIR pass manager (Taylor's Version)
The final draft of #91386 and #77665.
While the compile-time constraints in #91386 are cool, I decided on a more minimal approach for now. I want to explore phase constraints and maybe relative-ordering constraints in the future, though. This should preserve existing behavior **exactly** (please let me know if it doesn't) while making the following changes to the way we organize things today:
- Each `MirPhase` now corresponds to a single MIR pass. `run_passes` is not responsible for listing the correct MIR phase.
- `run_passes` no longer silently skips passes if the declared MIR phase is greater than or equal to the body's. This has bitten me multiple times. If you want this behavior, you can always branch on `body.phase` yourself.
- If your pass is solely to emit errors, you can use the `MirLint` interface instead, which gets a shared reference to `Body` instead of a mutable one. By differentiating the two, I hope to make it clearer in the short term where lints belong in the pipeline. In the long term perhaps we could enforce this at compile-time?
- MIR is no longer dumped for passes that aren't enabled, or for lints.
I tried to check that `-Zvalidate` still works correctly, since the MIR phase is now updated as soon as the associated pass is done, instead of at the end of all the passes in `run_passes`. However, it looks like `-Zvalidate` is broken with current nightlies anyways 😢 (it spits out a bunch of errors).
cc `@oli-obk` `@wesleywiser`
r? rust-lang/wg-mir-opt
std: Stabilize the `thread_local_const_init` feature
This commit is intended to follow the stabilization disposition of the
FCP that has now finished in #84223. This stabilizes the ability to flag
thread local initializers as `const` expressions which enables the macro
to generate more efficient code for accessing it, notably removing
runtime checks for initialization.
More information can also be found in #84223 as well as the tests where
the feature usage was removed in this PR.
Closes#84223
Currently, we check if the returned type equals to `tcx.ty_error()` not to emit
erroneous types, but this has a pitfall; for example,
`Option<[type error]> != tcx.ty_error()` holds.
Keep spans for generics in `#[derive(_)]` desugaring
Keep the spans for generics coming from a `derive`d Item, so that errors
and suggestions have better detail.
Fix#84003.
Updated error message for accidental uses of derive attribute as a crate attribute
This partially fixes the original issue #89566 by adding derive to the list of invalid crate attributes and then providing an updated error message however I'm not sure how to prevent the resolution error message from emitting without causing the compiler to just abort when it finds an invalid crate attribute (which I'd prefer not to do so we can find and emit other errors).
`@petrochenkov` I have been told you may have some insight on why it's emitting the resolution error though honestly I'm not sure if we need to worry about fixing it as long as we can provide the invalid crate attribute error also (which happens first anyway)
Fix ICE when `yield`ing in function returning `impl Trait`
Change an assert to a `delay_span_bug` and remove an unwrap, that should fix it.
Fixes#91477
Reintroduce `into_future` in `.await` desugaring
This is a reintroduction of the remaining parts from https://github.com/rust-lang/rust/pull/65244 that have not been relanded yet.
This isn't quite ready to merge yet. The last attempt was reverting due to performance regressions, so we need to make sure this does not introduce those issues again.
Issues #67644, #67982
/cc `@yoshuawuyts`
* Annotate `derive`d spans from the user's code with the appropciate context
* Add `Span::can_be_used_for_suggestion` to query if the underlying span
at the users' code
tidy run
update invalid crate attributes, improve error
update test outputs
de-capitalise error
update tests
Update invalid crate attributes, add help message
Update - generate span without using BytePos
Add correct dependancies
Update - generate suggestion without BytePos
Tidy run
update tests
Generate Suggestion without BytePos
Add all builtin attributes
add err builtin inner attr at top of crate
fix tests
add err builtin inner attr at top of crate
tidy fix
add err builtin inner attr at top of crate
As discovered in #85461, the MSVC linker treats weak symbols slightly
differently than unix-y linkers do. This causes link.exe to fail with
LNK1227 "conflicting weak extern definition" where as other targets are
able to link successfully.
This changes the dead functions from being generated as weak/hidden to
private/default which, as the LLVM reference says:
> Global values with “private” linkage are only directly accessible by
objects in the current module. In particular, linking code into a module
with a private global value may cause the private to be renamed as
necessary to avoid collisions. Because the symbol is private to the
module, all references can be updated. This doesn’t show up in any
symbol table in the object file.
This fixes the conflicting weak symbols but doesn't address the reason
*why* we have conflicting symbols for these dead functions. The test
cases added in this commit contain a minimal repro of the fundamental
issue which is that the logic used to decide what dead code functions
should be codegen'd in the current CGU doesn't take into account that
functions can be duplicated across multiple CGUs (for instance, in the
case of `#[inline(always)]` functions).
Fixing that is likely to be a more complex change (see
https://github.com/rust-lang/rust/issues/85461#issuecomment-985005805).
Fixes#85461
Revert "Auto merge of #91354 - fee1-dead:const_env, r=spastorino"
This reverts commit 18bb8c61a9, reversing
changes made to d9baa36190.
Reverts #91354 in order to address #91489. We would need to place this changes in a more granular way and would also be nice to address the small perf regression that was also introduced.
r? `@oli-obk`
cc `@fee1-dead`
Optimize `rustc_lexer`
The `cursor.first()` method in `rustc_lexer` now calls the `chars.next()` method instead of `chars.nth_char(0)`.
This allows LLVM to optimize the code better. The biggest win is that `eat_while()` is now fully inlined and generates better assembly. This improves the lexer's performance by 35% in a micro-benchmark I made (Lexing all 18MB of code in the compiler directory). But lexing is only a small part of the overall compilation time, so I don't know how significant it is.
Big thanks to criterion and `cargo asm`.
Fix ICE #91268 by checking that the snippet ends with a `)`
Fix#91268
Previously it was assumed that the last character of `snippet` will be a `)`, so using `snippet.len() - 1` as an index should be safe. However as we see in the test, it is possible to enter that branch without a closing `)`, and it will trigger the panic if the last character happens to be multibyte.
The fix is to ensure that the snippet ends with `)`, and skip the suggestion otherwise.
Implement write() method for Box<MaybeUninit<T>>
This adds method similar to `MaybeUninit::write` main difference being
it returns owned `Box`. This can be used to elide copy from stack
safely, however it's not currently tested that the optimization actually
occurs.
Analogous methods are not provided for `Rc` and `Arc` as those need to
handle the possibility of sharing. Some version of them may be added in
the future.
This was discussed in #63291 which this change extends.
Looks like Generator drop shims already have `post_borrowck_cleanup` run
on them. That's a bit surprising, since it means they're getting const-
and maybe borrow-checked? This merits further investigation, but for now
just preserve the status quo.
Rollup of 12 pull requests
Successful merges:
- #89954 (Fix legacy_const_generic doc arguments display)
- #91321 (Handle placeholder regions in NLL type outlive constraints)
- #91329 (Fix incorrect usage of `EvaluatedToOk` when evaluating `TypeOutlives`)
- #91364 (Improve error message for incorrect field accesses through raw pointers)
- #91387 (Clarify and tidy up explanation of E0038)
- #91410 (Move `#![feature(const_precise_live_drops)]` checks earlier in the pipeline)
- #91435 (Improve diagnostic for missing half of binary operator in `if` condition)
- #91444 (disable tests in Miri that take too long)
- #91457 (Add additional test from rust issue number 91068)
- #91460 (Document how `last_os_error` should be used)
- #91464 (Document file path case sensitivity)
- #91466 (Improve the comments in `Symbol::interner`.)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Improve diagnostic for missing half of binary operator in `if` condition
Fixes#91421. I've also changed it so that it doesn't consume the `else` token in the error case, because it will try to consume it again afterwards, leading to this incorrect error message (where the `else` reported as missing is actually there):
```
error: expected one of `.`, `;`, `?`, `else`, or an operator, found `{`
--> src/main.rs:4:12
|
4 | } else { 4 };
| ^ expected one of `.`, `;`, `?`, `else`, or an operator
```
r? `@lcnr`
Move `#![feature(const_precise_live_drops)]` checks earlier in the pipeline
Should mitigate the issues found during MCP on #73255.
Once this is done, we should clean up the queries a bit, since I think `mir_drops_elaborated_and_const_checked` can be merged back into `mir_promoted`.
Fixes#90770.
cc ``@rust-lang/wg-const-eval``
r? ``@nikomatsakis`` (since they reviewed #71824)
Clarify and tidy up explanation of E0038
I ran into E0038 (specifically the `Self:Sized` constraint on object-safety) the other day and it seemed to me that the explanations I found floating around the internet were a bit .. wrong. Like they didn't make sense. And then I went and checked the official explanation here and it didn't make sense either.
As far as I can tell (reading through the history of the RFCs), two totally different aspects of object-safety have got tangled up in much of the writing on the subject:
- Object-safety related to "not even theoretically possible" issues. This includes things like "methods that take or return Self by value", which obviously will never work for an unsized type in a world with fixed-size stack frames (and it'd be an opaque type anyways, which, ugh). This sort of thing was originally decided method-by-method, with non-object-safe methods stripped from objects; but in [RFC 0255](https://rust-lang.github.io/rfcs/0255-object-safety.html) this sort of per-impossible-method reasoning was made into a per-trait safety property (with the escape hatch left in where users could mark methods `where Self:Sized` to have them stripped before the trait's object safety is considered).
- Object-safety related to "totally possible but ergonomically a little awkward" issues. Specifically in a trait with `Trait:Sized`, there's no a priori reason why this constraint makes the trait impossible to make into an object -- imagine it had nothing but harmless `&self`-taking methods. No problem! Who cares if the Trait requires its implementing types to be sized? As far as I can tell reading the history here, in both RFC 0255 and then later in [RFC 0546](https://rust-lang.github.io/rfcs/0546-Self-not-sized-by-default.html) it seems that the motivation for making `Trait:Sized` be non-object-safe has _nothing to do_ with the impossibility of making objects out of such types, and everything to do with enabling "[a trait object SomeTrait to implement the trait SomeTrait](https://rust-lang.github.io/rfcs/0546-Self-not-sized-by-default.html#motivation)". That is, since `dyn Trait` is unsized, if `Trait:Sized` then you can never have the automatic (and reasonable) ergonomic implicit `impl Trait for dyn Trait`. And the authors of that RFC really wanted that automatic implicit implementation of `Trait` for `dyn Trait`. So they just defined `Trait:Sized` as non-object safe -- no `dyn Trait` can ever exist that the compiler can't synthesize such an impl for. Well enough!
However, I noticed in my reading-and-reconstruction that lots of documentation on the internet, including forum and Q&A site answers and (most worrying) the compiler explanation all kinda grasp at something like the first ("not theoretically possible") explanation, and fail to mention the second ("just an ergonomic constraint") explanation. So I figured I'd clean up the docs to clarify, maybe confuse the next person less (unless of course I'm misreading the history here and misunderstanding motives -- please let me know if so!)
While here I also did some cleanups:
- Rewrote the preamble, trying to help the user get a little better oriented (I found the existing preamble a bit scattered).
- Modernized notation (using `dyn Trait`)
- Changed the section headings to all be written with the same logical sense: to all be written as "conditions that violate object safety" rather than a mix of that and the negated form "conditions that must not happen in order to ensure object safety".
I think there's a fair bit more to clean up in this doc -- the later sections get a bit rambly and I suspect there should be a completely separated-out section covering the `where Self:Sized` escape hatch for instructing the compiler to "do the old thing" and strip methods off traits when turning them into objects (it's a bit buried as a digression in the individual sub-error sections). But I did what I had time for now.
Fix incorrect usage of `EvaluatedToOk` when evaluating `TypeOutlives`
A global predicate is not guarnatenteed to outlive all regions.
If the predicate involves late-bound regions, then it may fail
to outlive other regions (e.g. `for<'b> &'b bool: 'static` does not
hold)
We now only produce `EvaluatedToOk` when a global predicate has no
late-bound regions - in that case, the ony region that can be present
in the type is 'static
This adds method similar to `MaybeUninit::write` main difference being
it returns owned `Box`. This can be used to elide copy from stack
safely, however it's not currently tested that the optimization actually
occurs.
Analogous methods are not provided for `Rc` and `Arc` as those need to
handle the possibility of sharing. Some version of them may be added in
the future.
This was discussed in #63291 which this change extends.
Issue 90702 fix: Stop treating some crate loading failures as fatal errors
Surface mulitple `extern crate` resolution errors at a time.
This is achieved by creating a dummy crate, instead of aborting directly after the resolution error. The `ExternCrateError` has been added to allow propagating the resolution error from `rustc_metadata` crate to the `rustc_resolve` with a minimal public surface. The `import_extern_crate` function is a block that was factored out from `build_reduced_graph_for_item` for better organization. The only added functionality made to it where the added error handling in the `process_extern_crate` call. The remaining bits in this function are the same as before.
Resolves#90702
r? `@petrochenkov`
Disallow non-c-like but "fieldless" ADTs from being casted to integer if they use arbitrary enum discriminant
Code like
```rust
#[repr(u8)]
enum Enum {
Foo /* = 0 */,
Bar(),
Baz{}
}
let x = Enum::Bar() as u8;
```
seems to be unintentionally allowed so we couldn't disallow them now ~~, but we could disallow them if arbitrary enum discriminant is used before 1.56 hits stable~~ (stabilization was reverted).
Related: #88621
`@rustbot` label +T-lang
Cleanup: Eliminate ConstnessAnd
This is almost a behaviour-free change and purely a refactoring. "almost" because we appear to be using the wrong ParamEnv somewhere already, and this is now exposed by failing a test using the unstable `~const` feature.
We most definitely need to review all `without_const` and at some point should probably get rid of many of them by using `TraitPredicate` instead of `TraitRef`.
This is a continuation of https://github.com/rust-lang/rust/pull/90274.
r? `@oli-obk`
cc `@spastorino` `@ecstatic-morse`
... if they use arbitrary enum discriminant. Code like
```rust
enum Enum {
Foo = 1,
Bar(),
Baz{}
}
```
seems to be unintentionally allowed so we couldn't disallow them now,
but we could disallow them if arbitrary enum discriminant is used before
1.56 hits stable.
Include lint errors in error count for `-Ztreat-err-as-bug`
This was a regression from https://github.com/rust-lang/rust/pull/87337;
the `panic_if_treat_err_as_bug` function only checked the number of hard
errors, not the number of lint errors.
r? `@oli-obk`
expand: Turn `ast::Crate` into a first class expansion target
And stop creating a fake `mod` item for the crate root when expanding a crate, thus addressing FIXMEs left in https://github.com/rust-lang/rust/pull/82238, and making a step towards a proper support for crate-level macro attributes (cc #54726).
I haven't added token collection support for the whole crate in this PR, maybe later.
r? `@Aaron1011`
This was a regression from https://github.com/rust-lang/rust/pull/87337;
the `panic_if_treat_err_as_bug` function only checked the number of hard
errors, not the number of lint errors.