Stabilize movbe target feature
Almost all "old" x86 target features are stable. As far as I can tell, these are the last two unstable features in the `x86-64-v2` or `x86-64-v3` microarchitecture levels, so I'm not sure if it was an oversight or if they're still unstable for a reason (see #106323 for `f16c`).
Note that this only stabilizes the target features, and not the intrinsics.
cc ```@Amanieu```
r? ```@rust-lang/lang```
Do not implement HashStable for HashSet (MCP 533)
This PR removes all occurrences of `HashSet` in query results, replacing it either with `FxIndexSet` or with `UnordSet`, and then removes the `HashStable` implementation of `HashSet`. This is part of implementing [MCP 533](https://github.com/rust-lang/compiler-team/issues/533), that is, removing the `HashStable` implementations of all collection types with unstable iteration order.
The changes are mostly mechanical. The only place where additional sorting is happening is in Miri's override implementation of the `exported_symbols` query.
wasm: Register the `relaxed-simd` target feature
This WebAssembly proposal is likely to reach stage 4 soon so this starts the support in Rust for the proposal by adding a target feature that can be enabled via attributes for the stdarch project to bind the intrinsics.
This WebAssembly proposal is likely to reach stage 4 soon so this starts
the support in Rust for the proposal by adding a target feature that can
be enabled via attributes for the stdarch project to bind the
intrinsics.
Add support for MIPS VZ ISA extension
[Link to relevant LLVM line where virt extension is specified](83fab8cee9/llvm/lib/Target/Mips/Mips.td (L172-L173))
This has been tested on mips-unknown-linux-musl with a target-cpu that is >= MIPS32 5 and `target-features=+virt`. The example was checked in a disassembler to ensure the correct assembly sequence was being generated using the virtualization instructions.
Needed additional work:
* MIPS is missing from [the Rust reference CPU feature lists](https://doc.rust-lang.org/reference/attributes/codegen.html#available-features)
Example docs for later:
```md
#### `mips` or `mips64`
This platform requires that `#[target_feature]` is only applied to [`unsafe`
functions][unsafe function]. This target's feature support is currently unstable
and must be enabled by `#![feature(mips_target_feature)]` ([Issue #44839])
[Issue #44839]: https://github.com/rust-lang/rust/issues/44839
Further documentation on these features can be found in the [MIPS Instruction Set
Reference Manual], or elsewhere on [mips.com].
[MIPS Instruction Set Reference Manual]: https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00086-2B-MIPS32BIS-AFP-6.06.pdf
[developer.arm.com]: https://www.mips.com/products/architectures/ase/
Feature | Implicitly Enables | Description
---------------|--------------------|-------------------
`fp64` | | 64-bit Floating Point
`msa` | | "MIPS SIMD Architecture"
`virt` | | Virtualization instructions (VZ ASE)
```
If the above is good I can also submit a PR for that if there's interest in documenting it while it's still unstable. Otherwise that can be dropped, I just wrote it before realizing it was possibly not a good idea.
Relevant to #44839
These use the same names as LLVM and is_riscv_feature_detected!:
- zba (address generation instructions)
- zbb (basic bit manipulation)
- zbc (carry-less multiplication)
- zbs (single-bit manipulation)
I was experimenting with cross-language LTO for the wasm target recently
between Rust and C and found that C was injecting the `+mutable-globals`
flag on all functions. When specifying the corresponding
`-Ctarget-feature=+mutable-globals` feature to Rust it prints a warning
about an unknown feature. I've added the `mutable-globals` feature plus
another few I know of to the list of known features for wasm targets.
These features all continue to be unstable to source code as they were
before.
Fold aarch64 feature +fp into +neon
Arm's FEAT_FP and Feat_AdvSIMD describe the same thing on AArch64:
The Neon unit, which handles both floating point and SIMD instructions.
Moreover, a configuration for AArch64 must include both or neither.
Arm says "entirely proprietary" toolchains may omit floating point:
https://developer.arm.com/documentation/102374/0101/Data-processing---floating-point
In the Programmer's Guide for Armv8-A, Arm says AArch64 can have
both FP and Neon or neither in custom implementations:
https://developer.arm.com/documentation/den0024/a/AArch64-Floating-point-and-NEON
In "Bare metal boot code for Armv8-A", enabling Neon and FP
is just disabling the same trap flag:
https://developer.arm.com/documentation/dai0527/a
In an unlikely future where "Neon and FP" become unrelated,
we can add "[+-]fp" as its own feature flag.
Until then, we can simplify programming with Rust on AArch64 by
folding both into "[+-]neon", which is valid as it supersets both.
"[+-]neon" is retained for niche uses such as firmware, kernels,
"I just hate floats", and so on.
I am... pretty sure no one is relying on this.
An argument could be made that, as we are not an "entirely proprietary" toolchain, we should not support AArch64 without floats at all. I think that's a bit excessive. However, I want to recognize the intent: programming for AArch64 should be simplified where possible. For x86-64, programmers regularly set up illegal feature configurations because it's hard to understand them, see https://github.com/rust-lang/rust/issues/89586. And per the above notes, plus the discussion in https://github.com/rust-lang/rust/issues/86941, there should be no real use cases for leaving these features split: the two should in fact always go together.
- Fixesrust-lang/rust#95002.
- Fixesrust-lang/rust#95064.
- Fixesrust-lang/rust#95122.
Arm's FEAT_FP and Feat_AdvSIMD describe the same thing on AArch64:
The Neon unit, which handles both floating point and SIMD instructions.
Moreover, a configuration for AArch64 must include both or neither.
Arm says "entirely proprietary" toolchains may omit floating point:
https://developer.arm.com/documentation/102374/0101/Data-processing---floating-point
In the Programmer's Guide for Armv8-A, Arm says AArch64 can have
both FP and Neon or neither in custom implementations:
https://developer.arm.com/documentation/den0024/a/AArch64-Floating-point-and-NEON
In "Bare metal boot code for Armv8-A", enabling Neon and FP
is just disabling the same trap flag:
https://developer.arm.com/documentation/dai0527/a
In an unlikely future where "Neon and FP" become unrelated,
we can add "[+-]fp" as its own feature flag.
Until then, we can simplify programming with Rust on AArch64 by
folding both into "[+-]neon", which is valid as it supersets both.
"[+-]neon" is retained for niche uses such as firmware, kernels,
"I just hate floats", and so on.
Stabilize ADX target feature
This is a continuation of #60109, which noted that while the ADX intrinsics were stabilized, the corresponding target feature never was.
This PR follows the same general structure and stabilizes the ADX target feature.
See also https://github.com/rust-lang/rust/issues/44839 - tracking issue for target feature
These features include:
- V for vector extension
- Zfinx, Zdinx, Zhinx and Zhinxmin float in integer register extensions
- Zfh, Zfhmin 16-bit float pointer extensions
- Zbkb, Zkbc, Zbkc, Zk* cryptography extensions
It matches name in LLVM feature and is_riscv_feature_detected!.
This is a continuation of #60109, which noted that while the ADX
intrinsics were stabilized, the corresponding target feature never was.
This PR follows the same general structure and stabilizes the ADX target
feature.
ARM: Only allow using d16-d31 with asm! when supported by the target
Support can be determined by checking for the "d32" LLVM feature.
r? ```````````````@nagisa```````````````
If they are trying to use features rustc doesn't yet know about,
request a feature request.
Additionally, also warn against using feature names without leading `+`
or `-` signs.
The previous approach of checking for the reserve-r9 target feature
didn't actually work because LLVM only sets this feature very late when
initializing the per-function subtarget.
This commit performs two changes to stabilize Rust support for
WebAssembly simd intrinsics:
* The stdarch submodule is updated to pull in rust-lang/stdarch#1179.
* The `wasm_target_feature` feature gate requirement for the `simd128`
feature has been removed, stabilizing the name `simd128`.
This should conclude the FCP started on #74372 and...
Closes#74372