match lowering: handle or-patterns one layer at a time
`create_or_subcandidates` and `merge_trivial_subcandidates` both call themselves recursively to handle nested or-patterns, which is hard to follow. In this PR I avoid the need for that; we now process a single "layer" of or-patterns at a time.
By calling back into `match_candidates`, we only need to expand one layer at a time. Conversely, since we always try to simplify a layer that we just expanded (thanks to https://github.com/rust-lang/rust/pull/123067), we only have to merge one layer at a time.
r? `@matthewjasper`
Don't inherit codegen attrs from parent static
Putting this up partly for discussion and partly for review. Specifically, in #121644, `@oli-obk` designed a system that creates new static items for representing nested allocations in statics. However, in that PR, oli made it so that these statics inherited the codegen attrs from the parent.
This causes problems such as colliding symbols with `#[export_name]` and ICEs with `#[no_mangle]` since these synthetic statics have no `tcx.item_name(..)`.
So the question is, is there any case where we *do* want to inherit codegen attrs from the parent? The only one that seems a bit suspicious is the thread-local attribute. And there may be some interesting interactions with the coverage attributes as well...
Fixes (after backport) #123274. Fixes#123243. cc #121644.
r? `@oli-obk` cc `@nnethercote` `@RalfJung` (reviewers on that pr)
Refactor the way bootstrap invokes `cargo miri`
Instead of basically doing `cargo run --manifest-path=<cargo-miri's manifest> -- miri`, let's invoke the `cargo-miri` binary directly. That means less indirections, and also makes it easier to e.g. run the libcore test suite in Miri. (But there are still other issues with that.)
Also also adjusted Miri's stage numbering so that it is consistent with rustc/rustdoc.
This also makes `./x.py test miri` honor `--no-doc`.
And this fixes https://github.com/rust-lang/rust/issues/123177 by moving where we handle parallel_compiler.
Fix error message for `env!` when env var is not valid Unicode
Currently (without this PR) the `env!` macro emits an ```environment variable `name` not defined at compile time``` error when the environment variable is defined, but not a valid Unicode string. This PR introduces a separate more accurate error message, and a test to verify this behaviour.
For reference, before this PR, the new test would have outputted:
```
error: environment variable `NON_UNICODE_VAR` not defined at compile time
--> non_unicode_env.rs:2:13
|
2 | let _ = env!("NON_UNICODE_VAR");
| ^^^^^^^^^^^^^^^^^^^^^^^
|
= help: use `std::env::var("NON_UNICODE_VAR")` to read the variable at run time
= note: this error originates in the macro `env` (in Nightly builds, run with -Z macro-backtrace for more info)
error: aborting due to 1 previous error
```
whereas with this PR, the test ouputs:
```
error: environment variable `NON_UNICODE_VAR` is not a valid Unicode string
--> non_unicode_env.rs:2:13
|
2 | let _ = env!("NON_UNICODE_VAR");
| ^^^^^^^^^^^^^^^^^^^^^^^
|
= note: this error originates in the macro `env` (in Nightly builds, run with -Z macro-backtrace for more info)
error: aborting due to 1 previous error
```
Use the `Align` type when parsing alignment attributes
Use the `Align` type in `rustc_attr::parse_alignment`, removing the need to call `Align::from_bytes(...).unwrap()` later in the compilation process.
doc: describe panic conditions for SliceIndex implementations
Implementation note: The most probable place for users to find the documentation is at https://doc.rust-lang.org/std/slice/trait.SliceIndex.html
On that page, documentation added to specific methods will not be visible. As such, I opted to add the comments to the impl blocks directly.
Helps with #121568.
Rewrite `core-no-fp-fmt-parse` test in Rust
Claiming the simple "core-no-fp-fmt-parse" test from #121876. `run_make_support` was altered with `arg_path` written in #121918 by `@abhay-51,` with additional doc comment.
Preliminary GSoC contribution for the project proposal mentored by `@jieyouxu.`
Implementation note: The most probable place for users to find
the documentation is at https://doc.rust-lang.org/std/slice/trait.SliceIndex.html
On that page, documentation added to specific methods will not
be visible. As such, I opted to add the comments to the impl blocks
directly.
Helps with #121568.
Make source tarball generation more reproducible
This PR performs several changes to source tarball generation (`x dist rustc-src`) in order to make it more reproducible (in light of the recent "xz backdoor"...). I want to follow up on it with making a separate CI workflow for generating the tarball.
After this PR, running this locally produces identical checksums:
```bash
$ ./x dist rustc-src
$ sha256sum build/dist/rustc-1.79.0-src.tar.gz
$ ./x dist rustc-src
$ sha256sum build/dist/rustc-1.79.0-src.tar.gz
```
r? `@Mark-Simulacrum`
pattern analysis: Require enum indices to be contiguous
We had a cfg-hack to allow rust-analyzer to use non-contiguous indices for its enum variants. Unfortunately this no longer works if r-a uses the in-tree version of the crate.
This PR removes the hack, and on the r-a side we'll have to use contiguous indices but that's not too hard.
r? `@compiler-errors`
Stop calling visitors `V`
Renames some visitors which currently have the unhelpful name of `V`. It's not self-documenting, and there is no situation where saving a few bytes in source code helps anyone.
Stacked on top of #123202 due to conflict.
match lowering: sort `Eq` candidates in the failure case too
This is a slight tweak to MIR gen of matches. Take a match like:
```rust
match (s, flag) {
("a", _) if foo() => 1,
("b", true) => 2,
("a", false) => 3,
(_, true) => 4,
_ => 5,
}
```
If we switch on `s == "a"`, the first candidate matches, and we learn almost nothing about the second candidate. So there's a choice:
1. (what we do today) stop sorting candidates, keep the "b" case grouped with everything below. This could allow us to be clever here and test on `flag == true` next.
2. (what this PR does) sort "b" into the failure case. The "b" will be alone (fewer opportunities for picking a good test), but that means the two "a" cases require a single test.
Today, we aren't clever in which tests we pick, so this is an unambiguous win. In a future where we pick tests better, idk. Grouping tests as much as possible feels like a generally good strategy.
This was proposed in https://github.com/rust-lang/rust/issues/29623 (9 years ago :D)