Simplify manual ptr arithmetic in slice::Iter with ptr_sub
The old code was introduced in #61885, which predates the ptr_sub method and underlying intrinsic. The codegen test still passes.
r? `@scottmcm`
Leak amplification for peek_mut() to ensure BinaryHeap's invariant is always met
In the libs-api team's discussion around #104210, some of the team had hesitations around exposing malformed BinaryHeaps of an element type whose Ord and Drop impls are trusted, and which does not contain interior mutability.
For example in the context of this kind of code:
```rust
use std::collections::BinaryHeap;
use std::ops::Range;
use std::slice;
fn main() {
let slice = &mut ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'];
let cut_points = BinaryHeap::from(vec![4, 2, 7]);
println!("{:?}", chop(slice, cut_points));
}
// This is a souped up slice::split_at_mut to split in arbitrary many places.
//
// usize's Ord impl is trusted, so 1 single bounds check guarantees all those
// output slices are non-overlapping and in-bounds
fn chop<T>(slice: &mut [T], mut cut_points: BinaryHeap<usize>) -> Vec<&mut [T]> {
let mut vec = Vec::with_capacity(cut_points.len() + 1);
let max = match cut_points.pop() {
Some(max) => max,
None => {
vec.push(slice);
return vec;
}
};
assert!(max <= slice.len());
let len = slice.len();
let ptr: *mut T = slice.as_mut_ptr();
let get_unchecked_mut = unsafe {
|range: Range<usize>| &mut *slice::from_raw_parts_mut(ptr.add(range.start), range.len())
};
vec.push(get_unchecked_mut(max..len));
let mut end = max;
while let Some(start) = cut_points.pop() {
vec.push(get_unchecked_mut(start..end));
end = start;
}
vec.push(get_unchecked_mut(0..end));
vec
}
```
```console
[['7', '8', '9'], ['4', '5', '6'], ['2', '3'], ['0', '1']]
```
In the current BinaryHeap API, `peek_mut()` is the only thing that makes the above function unsound.
```rust
let slice = &mut ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'];
let mut cut_points = BinaryHeap::from(vec![4, 2, 7]);
{
let mut max = cut_points.peek_mut().unwrap();
*max = 0;
std::mem::forget(max);
}
println!("{:?}", chop(slice, cut_points));
```
```console
[['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'], [], ['2', '3'], ['0', '1']]
```
Or worse:
```rust
let slice = &mut ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'];
let mut cut_points = BinaryHeap::from(vec![100, 100]);
{
let mut max = cut_points.peek_mut().unwrap();
*max = 0;
std::mem::forget(max);
}
println!("{:?}", chop(slice, cut_points));
```
```console
[['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'], [], ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '\u{1}', '\0', '?', '翾', '?', '翾', '\0', '\0', '?', '翾', '?', '翾', '?', '啿', '?', '啿', '?', '啿', '?', '啿', '?', '啿', '?', '翾', '\0', '\0', '', '啿', '\u{5}', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\u{8}', '\0', '`@',` '\0', '\u{1}', '\0', '?', '翾', '?', '翾', '?', '翾', '
thread 'main' panicked at 'index out of bounds: the len is 33 but the index is 33', library/core/src/unicode/unicode_data.rs:319:9
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
```
---
This PR makes `peek_mut()` use leak amplification (https://doc.rust-lang.org/1.66.0/nomicon/leaking.html#drain) to preserve the heap's invariant even in the situation that `PeekMut` gets leaked.
I'll also follow up in the tracking issue of unstable `drain_sorted()` (#59278) and `retain()` (#71503).
Fix the stability attributes for `std::os::fd`.
As `@bjorn3` pointed out [here], I used the wrong stability attribute in #98368 when making `std::os::fd` public. I set it to Rust 1.63, which was when io-safety was stabilized, but it should be Rust 1.66, which was when `std::os::fd` was stabilized.
[here]: https://github.com/rust-lang/rust/pull/98368#discussion_r1063721420
As @bjorn3 pointed out [here], I used the wrong stability attribute in #98368
when making `std::os::fd` public. I set it to Rust 1.63, which was when
io-safety was stabilized, but it should be Rust 1.66, which was when
`std::os::fd` was stabilized.
[here]: https://github.com/rust-lang/rust/pull/98368#discussion_r1063721420
Remove various double spaces in the libraries.
I was just pretty bothered by this when reading the source for a function, and was suggested to check if this happened elsewhere.
Stop probing for statx unless necessary
As is the current toy program:
fn main() -> std::io::Result<()> {
use std::fs;
let metadata = fs::metadata("foo.txt")?;
assert!(!metadata.is_dir());
Ok(())
}
... observed under strace will issue:
[snip]
statx(0, NULL, AT_STATX_SYNC_AS_STAT, STATX_ALL, NULL) = -1 EFAULT (Bad address) statx(AT_FDCWD, "foo.txt", AT_STATX_SYNC_AS_STAT, STATX_ALL, {stx_mask=STATX_ALL|STATX_MNT_ID, stx_attributes=0, stx_mode=S_IFREG|0644, stx_size=0, ...}) = 0
While statx is not necessarily always present, checking for it can be delayed to the first error condition. Said condition may very well never happen, in which case the check got avoided altogether.
Note this is still suboptimal as there still will be programs issuing it, but bulk of the problem is removed.
Tested by forbidding the syscall for the binary and observing it correctly falls back to newfstatat.
While here tidy up the commentary, in particular by denoting some problems with the current approach.
mv binary_heap.rs binary_heap/mod.rs
I confess this request is somewhat selfish, as it's made in order to ease synchronisation with my [copse](https://crates.io/crates/copse) crate (see eggyal/copse#6 for explanation). I wholly understand that such grounds may be insufficient to justify merging this request—but no harm in asking, right?
reword Option::as_ref and Option::map examples
The description for the examples of `Option::as_ref` and `Option::map` imply that the example is only doing type conversion, when it is actually finding the length of a string.
Changes the wording to imply that some operation is being run on the value contained in the `Option`
closes#104476
[LSDA] Take ttype_index into account when taking unwind action
If `cs_action != 0`, we should check the `ttype_index` field in action record. If `ttype_index == 0`, a clean up action is taken; otherwise catch action is taken.
This can fix unwind failure on AIX which uses LLVM's libunwind by default. IIUC, rust's LSDA is borrowed from c++ and I'm assuming itanium-cxx-abi https://itanium-cxx-abi.github.io/cxx-abi/exceptions.pdf should be followed, so the fix follows what libcxxabi does. See ec48682ce9/libcxxabi/src/cxa_personality.cpp (L152) for use of `ttype_index`.
- Fixes https://github.com/rust-lang/rust/issues/91628.
- Fixes https://github.com/emscripten-core/emscripten/issues/15722.
See discussion in both issues.
The TL;DR is that weak linkage causes LLVM to produce broken Wasm, presumably due to pointer mismatch. The code is casting a void pointer to a function pointer with specific signature, but Wasm is very strict about function pointer compatibility, so the resulting code is invalid.
Ideally LLVM should catch this earlier in the process rather than emit invalid Wasm, but it currently doesn't and this is an easy and valid fix, given that Emcripten doesn't have `__cxa_thread_atexit_impl` these days anyway.
Unfortunately, I can't add a regression test as even after looking into this issue for a long time, I couldn't reproduce it with any minimal Rust example, only with extracted LLVM IR or on a large project involving Rust + C++.
r? @alexcrichton
Two locations check whether this build-time environment variable is
defined. Allowing it to be explicitly disabled with a "0" value is
useful, especially for integrating with external build systems.
Stabilize `::{core,std}::pin::pin!`
As discussed [over here](https://github.com/rust-lang/rust/issues/93178#issuecomment-1295843548), it looks like a decent time to stabilize the `pin!` macro.
### Public API
```rust
// in module `core::pin`
/// API: `fn pin<T>($value: T) -> Pin<&'local mut T>`
pub macro pin($value:expr $(,)?) {
…
}
```
- Tracking issue: #93178
(now all this needs is an FCP by the proper team?)
doc: rewrite doc for signed int::{carrying_add,borrowing_sub}
Reword the documentation for bigint helper methods, signed `int::{carrying_add,borrowing_sub}` (#85532).
This change is a follow-up to #101889, which was for the unsigned methods.
std tests: use __OsLocalKeyInner from realstd
This is basically the same as https://github.com/rust-lang/rust/pull/100201, but for __OsLocalKeyInner:
Some std tests are failing in Miri on Windows because [this static](a377893da2/library/std/src/sys/windows/thread_local_key.rs (L234-L239)) is getting duplicated, and Miri does not handle that properly -- Miri does not support this magic `.CRT$XLB` linker section, but instead just looks up this particular hard-coded static in the standard library. This PR lets the test suite use the std static instead of having its own copy.
Fixes https://github.com/rust-lang/miri/issues/2754
r? `@thomcc`
As is the current toy program:
fn main() -> std::io::Result<()> {
use std::fs;
let metadata = fs::metadata("foo.txt")?;
assert!(!metadata.is_dir());
Ok(())
}
... observed under strace will issue:
[snip]
statx(0, NULL, AT_STATX_SYNC_AS_STAT, STATX_ALL, NULL) = -1 EFAULT (Bad address)
statx(AT_FDCWD, "foo.txt", AT_STATX_SYNC_AS_STAT, STATX_ALL, {stx_mask=STATX_ALL|STATX_MNT_ID, stx_attributes=0, stx_mode=S_IFREG|0644, stx_size=0, ...}) = 0
While statx is not necessarily always present, checking for it can be
delayed to the first error condition. Said condition may very well never
happen, in which case the check got avoided altogether.
Note this is still suboptimal as there still will be programs issuing
it, but bulk of the problem is removed.
Tested by forbidding the syscall for the binary and observing it
correctly falls back to newfstatat.
While here tidy up the commentary, in particular by denoting some
problems with the current approach.
specialize impl of `ToString` on `bool`
Fixes#106611
Specialize `bool`s `ToString` impl by copying it from `Display`. This is a significant optimization as we avoid lots of dynamic dispatch. AFAIK, this doesn't require a API Change Proposal as this doesn't regress existing code and can be undone without regressing code.
Document that `Vec::from_raw_parts[_in]` must be given a pointer from the correct allocator.
Currently, the documentation of `Vec::from_raw_parts` and `Vec::from_raw_parts_in` says nothing about what allocator the pointer must come from. This PR adds that missing information explicitly.
Don't derive Debug for `OnceWith` & `RepeatWith`
Closures don't impl Debug, so the derived impl is kinda useless. The behavior of not debug-printing closures is consistent with the rest of the iterator adapters/sources.
Loosen the bound on the Debug implementation of Weak.
Both `rc::Weak<T>` and `sync::Weak<T>` currently require `T: Debug` in their own `Debug` implementations, but they don't currently use it; they only ever print a fixed string.
A general implementation of Debug for Weak that actually attempts to upgrade and rely on the contents is unlikely in the future because it may have unbounded recursion in the presence of reference cycles, which Weak is commonly used in. (This was the justification for why the current implementation [was implemented the way it is](f0976e2cf3)).
When I brought it up [on the forum](https://internals.rust-lang.org/t/could-the-bound-on-weak-debug-be-relaxed/15504), it was suggested that, even if an implementation is specialized in the future that relies on the data stored within the Weak, it would likely rely on specialization anyway, and could therefore easily specialize on the Debug bound as well.
Update `rand` in the stdlib tests, and remove the `getrandom` feature from it.
The main goal is actually removing `getrandom`, so that eventually we can allow running the stdlib test suite on tier3 targets which don't have `getrandom` support. Currently those targets can only run the subset of stdlib tests that exist in uitests, and (generally speaking), we prefer not to test libstd functionality in uitests, which came up recently in https://github.com/rust-lang/rust/pull/104095 and https://github.com/rust-lang/rust/pull/104185. Additionally, the fact that we can't update `rand`/`getrandom` means we're stuck with the old set of tier3 targets, so can't test new ones.
~~Anyway, I haven't checked that this actually does allow use on tier3 targets (I think it does not, as some work is needed in stdlib submodules) but it moves us slightly closer to this, and seems to allow at least finally updating our `rand` dep, which definitely improves the status quo.~~ Checked and works now.
For the most part, our tests and benchmarks are fine using hard-coded seeds. A couple tests seem to fail with this (stuff manipulating the environment expecting no collisions, for example), or become pointless (all inputs to a function become equivalent). In these cases I've done a (gross) dance (ab)using `RandomState` and `Location::caller()` for some extra "entropy".
Trying to share that code seems *way* more painful than it's worth given that the duplication is a 7-line function, even if the lines are quite gross. (Keeping in mind that sharing it would require adding `rand` as a non-dev dep to std, and exposing a type from it publicly, all of which sounds truly awful, even if done behind a perma-unstable feature).
See also some previous attempts:
- https://github.com/rust-lang/rust/pull/86963 (in particular https://github.com/rust-lang/rust/pull/86963#issuecomment-885438936 which explains why this is non-trivial)
- https://github.com/rust-lang/rust/pull/89131
- https://github.com/rust-lang/rust/pull/96626#issuecomment-1114562857 (I tried in that PR at the same time, but settled for just removing the usage of `thread_rng()` from the benchmarks, since that was the main goal).
- https://github.com/rust-lang/rust/pull/104185
- Probably more. It's very tempting of a thing to "just update".
r? `@Mark-Simulacrum`
Improve include macro documentation
As outlined in #106118, the `include!` macro is a SEO problem when it comes to the Rust documentation. Beginners may see it as a replacement to `include` syntax in other languages. I feel like this documentation should quite explicitly link to the modules' documentation.
The primary goal of this PR is to address that issue by adding a warning to the documentation. While I was here, I also added some other parts. This included a `Uses` section and some (intra doc) links to other relevant topics.
I hope this can help beginners to Rust more quickly understand some multi-file project intricacies.
# References
- Syntax for the warning: 58accc6da3/tracing/src/lib.rs (L55)
Fix a few clippy lints in libtest
- Remove unnecessary references and dereferences
- Use `.contains` instead of `a <= x && x <= b`
- Use `mem::take` instead of `mem::replace` where possible
cc https://github.com/rust-lang/rust/pull/106394 :)