Diagnostic renaming
Renaming various diagnostic types from `Diagnostic*` to `Diag*`. Part of https://github.com/rust-lang/compiler-team/issues/722. There are more to do but this is enough for one PR.
r? `@davidtwco`
Add newtypes for bool fields/params/return types
Fixed all the cases of this found with some simple searches for `*/ bool` and `bool /*`; probably many more
I have a suspicion that quite a few delayed bug paths are impossible to
reach, so I did an experiment.
I converted every `delayed_bug` to a `bug`, ran the full test suite,
then converted back every `bug` that was hit. A surprising number were
never hit.
The next commit will convert some more back, based on human judgment.
There are lots of functions that modify a diagnostic. This can be via a
`&mut Diagnostic` or a `&mut DiagnosticBuilder`, because the latter type
wraps the former and impls `DerefMut`.
This commit converts all the `&mut Diagnostic` occurrences to `&mut
DiagnosticBuilder`. This is a step towards greatly simplifying
`Diagnostic`. Some of the relevant function are made generic, because
they deal with both errors and warnings. No function bodies are changed,
because all the modifier methods are available on both `Diagnostic` and
`DiagnosticBuilder`.
fixes#117448
For example unnecessary imports in std::prelude that can be eliminated:
```rust
use std::option::Option::Some;//~ WARNING the item `Some` is imported redundantly
use std::option::Option::None; //~ WARNING the item `None` is imported redundantly
```
errors: only eagerly translate subdiagnostics
Subdiagnostics don't need to be lazily translated, they can always be eagerly translated. Eager translation is slightly more complex as we need to have a `DiagCtxt` available to perform the translation, which involves slightly more threading of that context.
This slight increase in complexity should enable later simplifications - like passing `DiagCtxt` into `AddToDiagnostic` and moving Fluent messages into the diagnostic structs rather than having them in separate files (working on that was what led to this change).
r? ```@nnethercote```
Subdiagnostics don't need to be lazily translated, they can always be
eagerly translated. Eager translation is slightly more complex as we need
to have a `DiagCtxt` available to perform the translation, which involves
slightly more threading of that context.
This slight increase in complexity should enable later simplifications -
like passing `DiagCtxt` into `AddToDiagnostic` and moving Fluent messages
into the diagnostic structs rather than having them in separate files
(working on that was what led to this change).
Signed-off-by: David Wood <david@davidtw.co>
Make sure `tcx.create_def` also depends on the forever red node, instead of just `tcx.at(span).create_def`
oversight from https://github.com/rust-lang/rust/pull/119136
Not actually an issue, because all uses of `tcx.create_def` were in the resolver, which is `eval_always`, but still good to harden against future uses of `create_def`
cc `@petrochenkov` `@WaffleLapkin`
- improve diagnostics of field uniqueness check and representation check
- simplify the implementation of field uniqueness check
- remove some useless codes and improvement neatness
Invert diagnostic lints.
That is, change `diagnostic_outside_of_impl` and `untranslatable_diagnostic` from `allow` to `deny`, because more than half of the compiler has been converted to use translated diagnostics.
This commit removes more `deny` attributes than it adds `allow` attributes, which proves that this change is warranted.
r? ````@davidtwco````
Remove unused args from functions
`#[instrument]` suppresses the unused arguments from a function, *and* suppresses unused methods too! This PR removes things which are only used via `#[instrument]` calls, and fixes some other errors (privacy?) that I will comment inline.
It's possible that some of these arguments were being passed in for the purposes of being instrumented, but I am unconvinced by most of them.
resolve: Unload speculatively resolved crates before freezing cstore
Name resolution sometimes loads additional crates to improve diagnostics (e.g. suggest imports).
Not all of these diagnostics result in errors, sometimes they are just warnings, like in #117772.
If additional crates loaded speculatively stay and gets listed by things like `query crates` then they may produce further errors like duplicated lang items, because lang items from speculatively loaded crates are as good as from non-speculatively loaded crates.
They can probably do things like adding unintended impls from speculatively loaded crates to method resolution as well.
The extra crates will also get into the crate's metadata as legitimate dependencies.
In this PR I remove the speculative crates from cstore when name resolution is finished and cstore is frozen.
This is better than e.g. filtering away speculative crates in `query crates` because things like `DefId`s referring to these crates and leaking to later compilation stages can produce ICEs much easier, allowing to detect them.
The unloading could potentially be skipped if any errors were reported (to allow using `DefId`s from speculatively loaded crates for recovery), but I didn't do it in this PR because I haven't seen such cases of recovery. We can reconsider later if any relevant ICEs are reported.
Unblocks https://github.com/rust-lang/rust/pull/117772.
That is, change `diagnostic_outside_of_impl` and
`untranslatable_diagnostic` from `allow` to `deny`, because more than
half of the compiler has be converted to use translated diagnostics.
This commit removes more `deny` attributes than it adds `allow`
attributes, which proves that this change is warranted.
* Get rid of a typo in a function name
* Rename `currently_processing_generics`: The old name confused me at first since
I assumed it referred to generic *parameters* when it was in fact referring to
generic *arguments*. Generics are typically short for generic params.
* Get rid of a few unwraps by properly leveraging slice patterns
Suppress unhelpful diagnostics for unresolved top level attributes
Fixes#118455, unresolved top level attribute error didn't imported prelude and already have emitted an error, report builtin macro and attributes error by the way, so `check_invalid_crate_level_attr` in can ignore them.
Also fixes#89566, fixes#67107.
r? `@petrochenkov`
Fixes footnote handling in rustdoc
Fixes#100638.
You can now declare footnotes like this:
```rust
//! Reference to footnotes A[^1], B[^2] and C[^3].
//!
//! [^1]: Footnote A.
//! [^2]: Footnote B.
//! [^3]: Footnote C.
```
r? `@notriddle`
Make the coroutine def id of an async closure the child of the closure def id
Adjust def collection to make the (inner) coroutine returned by an async closure be a def id child of the (outer) closure. This makes it easy to map from coroutine -> closure by using `tcx.parent`, since currently it's not trivial to do this.
Because it's almost always static.
This makes `impl IntoDiagnosticArg for DiagnosticArgValue` trivial,
which is nice.
There are a few diagnostics constructed in
`compiler/rustc_mir_build/src/check_unsafety.rs` and
`compiler/rustc_mir_transform/src/errors.rs` that now need symbols
converted to `String` with `to_string` instead of `&str` with `as_str`,
but that' no big deal, and worth it for the simplifications elsewhere.
Error codes are integers, but `String` is used everywhere to represent
them. Gross!
This commit introduces `ErrCode`, an integral newtype for error codes,
replacing `String`. It also introduces a constant for every error code,
e.g. `E0123`, and removes the `error_code!` macro. The constants are
imported wherever used with `use rustc_errors::codes::*`.
With the old code, we have three different ways to specify an error code
at a use point:
```
error_code!(E0123) // macro call
struct_span_code_err!(dcx, span, E0123, "msg"); // bare ident arg to macro call
\#[diag(name, code = "E0123")] // string
struct Diag;
```
With the new code, they all use the `E0123` constant.
```
E0123 // constant
struct_span_code_err!(dcx, span, E0123, "msg"); // constant
\#[diag(name, code = E0123)] // constant
struct Diag;
```
The commit also changes the structure of the error code definitions:
- `rustc_error_codes` now just defines a higher-order macro listing the
used error codes and nothing else.
- Because that's now the only thing in the `rustc_error_codes` crate, I
moved it into the `lib.rs` file and removed the `error_codes.rs` file.
- `rustc_errors` uses that macro to define everything, e.g. the error
code constants and the `DIAGNOSTIC_TABLES`. This is in its new
`codes.rs` file.
This makes no sense, and has no effect. I suspect it's been confused
with a `code = "{code}"` attribute on a subdiagnostic suggestion, where
it is valid (but the "code" there is suggested source code, rather than
an error code.)
Don't manually resolve async closures in `rustc_resolve`
There's a comment here that talks about doing this "[so] closure [args] are detected as upvars rather than normal closure arg usages", but we do upvar analysis on the HIR now:
cd6d8f2a04/compiler/rustc_passes/src/upvars.rs (L21-L29)
Removing this ad-hoc logic makes it so that `async |x: &str|` now introduces an implicit binder, like regular closures.
r? ```@oli-obk```
exclude unexported macro bindings from extern crate
Fixes#119301
Macros that aren't exported from an external crate should not be defined.
r? ``@petrochenkov``
Pack u128 in the compiler to mitigate new alignment
This is based on #116672, adding a new `#[repr(packed(8))]` wrapper on `u128` to avoid changing any of the compiler's size assertions. This is needed in two places:
* `SwitchTargets`, otherwise its `SmallVec<[u128; 1]>` gets padded up to 32 bytes.
* `LitKind::Int`, so that entire `enum` can stay 24 bytes.
* This change definitely has far-reaching effects though, since it's public.
Rework how diagnostic lints are stored.
`Diagnostic::code` has the type `DiagnosticId`, which has `Error` and
`Lint` variants. Plus `Diagnostic::is_lint` is a bool, which should be
redundant w.r.t. `Diagnostic::code`.
Seems simple. Except it's possible for a lint to have an error code, in
which case its `code` field is recorded as `Error`, and `is_lint` is
required to indicate that it's a lint. This is what happens with
`derive(LintDiagnostic)` lints. Which means those lints don't have a
lint name or a `has_future_breakage` field because those are stored in
the `DiagnosticId::Lint`.
It's all a bit messy and confused and seems unintentional.
This commit:
- removes `DiagnosticId`;
- changes `Diagnostic::code` to `Option<String>`, which means both
errors and lints can straightforwardly have an error code;
- changes `Diagnostic::is_lint` to `Option<IsLint>`, where `IsLint` is a
new type containing a lint name and a `has_future_breakage` bool, so
all lints can have those, error code or not.
r? `@oli-obk`
never patterns: Check bindings wrt never patterns
Never patterns:
- Shouldn't contain bindings since they never match anything;
- Don't count when checking that or-patterns have consistent bindings.
r? `@compiler-errors`
`Diagnostic::code` has the type `DiagnosticId`, which has `Error` and
`Lint` variants. Plus `Diagnostic::is_lint` is a bool, which should be
redundant w.r.t. `Diagnostic::code`.
Seems simple. Except it's possible for a lint to have an error code, in
which case its `code` field is recorded as `Error`, and `is_lint` is
required to indicate that it's a lint. This is what happens with
`derive(LintDiagnostic)` lints. Which means those lints don't have a
lint name or a `has_future_breakage` field because those are stored in
the `DiagnosticId::Lint`.
It's all a bit messy and confused and seems unintentional.
This commit:
- removes `DiagnosticId`;
- changes `Diagnostic::code` to `Option<String>`, which means both
errors and lints can straightforwardly have an error code;
- changes `Diagnostic::is_lint` to `Option<IsLint>`, where `IsLint` is a
new type containing a lint name and a `has_future_breakage` bool, so
all lints can have those, error code or not.
In #119606 I added them and used a `_mv` suffix, but that wasn't great.
A `with_` prefix has three different existing uses.
- Constructors, e.g. `Vec::with_capacity`.
- Wrappers that provide an environment to execute some code, e.g.
`with_session_globals`.
- Consuming chaining methods, e.g. `Span::with_{lo,hi,ctxt}`.
The third case is exactly what we want, so this commit changes
`DiagnosticBuilder::foo_mv` to `DiagnosticBuilder::with_foo`.
Thanks to @compiler-errors for the suggestion.
- `struct_foo` + `emit` -> `foo`
- `create_foo` + `emit` -> `emit_foo`
I have made recent commits in other PRs that have removed some of these
shortcuts for combinations with few uses, e.g.
`struct_span_err_with_code`. But for the remaining combinations that
have high levels of use, we might as well use them wherever possible.
Because it takes an error code after the span. This avoids the confusing
overlap with the `DiagCtxt::struct_span_err` method, which doesn't take
an error code.
This works for most of its call sites. This is nice, because `emit` very
much makes sense as a consuming operation -- indeed,
`DiagnosticBuilderState` exists to ensure no diagnostic is emitted
twice, but it uses runtime checks.
For the small number of call sites where a consuming emit doesn't work,
the commit adds `DiagnosticBuilder::emit_without_consuming`. (This will
be removed in subsequent commits.)
Likewise, `emit_unless` becomes consuming. And `delay_as_bug` becomes
consuming, while `delay_as_bug_without_consuming` is added (which will
also be removed in subsequent commits.)
All this requires significant changes to `DiagnosticBuilder`'s chaining
methods. Currently `DiagnosticBuilder` method chaining uses a
non-consuming `&mut self -> &mut Self` style, which allows chaining to
be used when the chain ends in `emit()`, like so:
```
struct_err(msg).span(span).emit();
```
But it doesn't work when producing a `DiagnosticBuilder` value,
requiring this:
```
let mut err = self.struct_err(msg);
err.span(span);
err
```
This style of chaining won't work with consuming `emit` though. For
that, we need to use to a `self -> Self` style. That also would allow
`DiagnosticBuilder` production to be chained, e.g.:
```
self.struct_err(msg).span(span)
```
However, removing the `&mut self -> &mut Self` style would require that
individual modifications of a `DiagnosticBuilder` go from this:
```
err.span(span);
```
to this:
```
err = err.span(span);
```
There are *many* such places. I have a high tolerance for tedious
refactorings, but even I gave up after a long time trying to convert
them all.
Instead, this commit has it both ways: the existing `&mut self -> Self`
chaining methods are kept, and new `self -> Self` chaining methods are
added, all of which have a `_mv` suffix (short for "move"). Changes to
the existing `forward!` macro lets this happen with very little
additional boilerplate code. I chose to add the suffix to the new
chaining methods rather than the existing ones, because the number of
changes required is much smaller that way.
This doubled chainging is a bit clumsy, but I think it is worthwhile
because it allows a *lot* of good things to subsequently happen. In this
commit, there are many `mut` qualifiers removed in places where
diagnostics are emitted without being modified. In subsequent commits:
- chaining can be used more, making the code more concise;
- more use of chaining also permits the removal of redundant diagnostic
APIs like `struct_err_with_code`, which can be replaced easily with
`struct_err` + `code_mv`;
- `emit_without_diagnostic` can be removed, which simplifies a lot of
machinery, removing the need for `DiagnosticBuilderState`.
fix cyle error when suggesting to use associated function instead of constructor
Fixes https://github.com/rust-lang/rust/issues/119625.
The first commit fixes the infinite recursion and makes the cycle error actually show up. We do this by making the `Display` for `ty::Instance` impl respect `with_no_queries` so that it can be used in query descriptions.
The second commit fixes the cycle error `resolver_for_lowering` -> `normalize` -> `resolve_instance` (for evaluating const) -> `lang_items` (for `drop_in_place`) -> `resolver_for_lowering` (for collecting lang items). We do this by simply skipping the suggestion when encountering an unnormalized type.
Hide foreign `#[doc(hidden)]` paths in import suggestions
Stops the compiler from suggesting to import foreign `#[doc(hidden)]` paths.
```@rustbot``` label A-suggestion-diagnostics
`Diagnostic` has 40 methods that return `&mut Self` and could be
considered setters. Four of them have a `set_` prefix. This doesn't seem
necessary for a type that implements the builder pattern. This commit
removes the `set_` prefixes on those four methods.
This involves lots of breaking changes. There are two big changes that
force changes. The first is that the bitflag types now don't
automatically implement normal derive traits, so we need to derive them
manually.
Additionally, bitflags now have a hidden inner type by default, which
breaks our custom derives. The bitflags docs recommend using the impl
form in these cases, which I did.
Lots of vectors of messages called `message` or `msg`. This commit
pluralizes them.
Note that `emit_message_default` and `emit_messages_default` both
already existed, and both process a vector, so I renamed the former
`emit_messages_default_inner` because it's called by the latter.
`IntoDiagnostic` defaults to `ErrorGuaranteed`, because errors are the
most common diagnostic level. It makes sense to do likewise for the
closely-related (and much more widely used) `DiagnosticBuilder` type,
letting us write `DiagnosticBuilder<'a, ErrorGuaranteed>` as just
`DiagnosticBuilder<'a>`. This cuts over 200 lines of code due to many
multi-line things becoming single line things.
Add support for `for await` loops
This adds support for `for await` loops. This includes parsing, desugaring in AST->HIR lowering, and adding some support functions to the library.
Given a loop like:
```rust
for await i in iter {
...
}
```
this is desugared to something like:
```rust
let mut iter = iter.into_async_iter();
while let Some(i) = loop {
match core::pin::Pin::new(&mut iter).poll_next(cx) {
Poll::Ready(i) => break i,
Poll::Pending => yield,
}
} {
...
}
```
This PR also adds a basic `IntoAsyncIterator` trait. This is partly for symmetry with the way `Iterator` and `IntoIterator` work. The other reason is that for async iterators it's helpful to have a place apart from the data structure being iterated over to store state. `IntoAsyncIterator` gives us a good place to do this.
I've gated this feature behind `async_for_loop` and opened #118898 as the feature tracking issue.
r? `@compiler-errors`
Refactor AST trait bound modifiers
Instead of having two types to represent trait bound modifiers in the parser / the AST (`parser::ty::BoundModifiers` & `ast::TraitBoundModifier`), only to map one to the other later, just use `parser::ty::BoundModifiers` (moved & renamed to `ast::TraitBoundModifiers`).
The struct type is more extensible and easier to deal with (see [here](https://github.com/rust-lang/rust/pull/119099/files#r1430749981) and [here](https://github.com/rust-lang/rust/pull/119099/files#r1430752116) for context) since it more closely models what it represents: A compound of two kinds of modifiers, constness and polarity. Modeling this as an enum (the now removed `ast::TraitBoundModifier`) meant one had to add a new variant per *combination* of modifier kind, which simply isn't scalable and which lead to a lot of explicit non-DRY matches.
NB: `hir::TraitBoundModifier` being an enum is fine since HIR doesn't need to worry representing invalid modifier kind combinations as those get rejected during AST validation thereby immensely cutting down the number of possibilities.
On borrow return type, suggest borrowing from arg or owned return type
When we encounter a function with a return type that has an anonymous lifetime with no argument to borrow from, besides suggesting the `'static` lifetime we now also suggest changing the arguments to be borrows or changing the return type to be an owned type.
```
error[E0106]: missing lifetime specifier
--> $DIR/variadic-ffi-6.rs:7:6
|
LL | ) -> &usize {
| ^ expected named lifetime parameter
|
= help: this function's return type contains a borrowed value, but there is no value for it to be borrowed from
help: consider using the `'static` lifetime, but this is uncommon unless you're returning a borrowed value from a `const` or a `static`
|
LL | ) -> &'static usize {
| +++++++
help: instead, you are more likely to want to change one of the arguments to be borrowed...
|
LL | x: &usize,
| +
help: ...or alternatively, to want to return an owned value
|
LL - ) -> &usize {
LL + ) -> usize {
|
```
Fix#85843.
resolve: Use `def_kind` query to cleanup some code
Follow up to https://github.com/rust-lang/rust/pull/118188.
Similar attempts to use queries in resolver resulted in perf regressions in the past, so this needs a perf run first.
Introduce support for `async gen` blocks
I'm delighted to demonstrate that `async gen` block are not very difficult to support. They're simply coroutines that yield `Poll<Option<T>>` and return `()`.
**This PR is WIP and in draft mode for now** -- I'm mostly putting it up to show folks that it's possible. This PR needs a lang-team experiment associated with it or possible an RFC, since I don't think it falls under the jurisdiction of the `gen` RFC that was recently authored by oli (https://github.com/rust-lang/rfcs/pull/3513, https://github.com/rust-lang/rust/issues/117078).
### Technical note on the pre-generator-transform yield type:
The reason that the underlying coroutines yield `Poll<Option<T>>` and not `Poll<T>` (which would make more sense, IMO, for the pre-transformed coroutine), is because the `TransformVisitor` that is used to turn coroutines into built-in state machine functions would have to destructure and reconstruct the latter into the former, which requires at least inserting a new basic block (for a `switchInt` terminator, to match on the `Poll` discriminant).
This does mean that the desugaring (at the `rustc_ast_lowering` level) of `async gen` blocks is a bit more involved. However, since we already need to intercept both `.await` and `yield` operators, I don't consider it much of a technical burden.
r? `@ghost`
never_patterns: Parse match arms with no body
Never patterns are meant to signal unreachable cases, and thus don't take bodies:
```rust
let ptr: *const Option<!> = ...;
match *ptr {
None => { foo(); }
Some(!),
}
```
This PR makes rustc accept the above, and enforces that an arm has a body xor is a never pattern. This affects parsing of match arms even with the feature off, so this is delicate. (Plus this is my first non-trivial change to the parser).
~~The last commit is optional; it introduces a bit of churn to allow the new suggestions to be machine-applicable. There may be a better solution? I'm not sure.~~ EDIT: I removed that commit
r? `@compiler-errors`
Add support for `gen fn`
This builds on #116447 to add support for `gen fn` functions. For the most part we follow the same approach as desugaring `async fn`, but replacing `Future` with `Iterator` and `async {}` with `gen {}` for the body.
The version implemented here uses the return type of a `gen fn` as the yield type. For example:
```rust
gen fn count_to_three() -> i32 {
yield 1;
yield 2;
yield 3;
}
```
In the future, I think we should experiment with a syntax like `gen fn count_to_three() yield i32 { ... }`, but that can go in another PR.
cc `@oli-obk` `@compiler-errors`
When encoutering a privacy error on an item through a re-export that is
accessible in an alternative path, provide a structured suggestion with
that path.
```
error[E0603]: module import `mem` is private
--> $DIR/private-std-reexport-suggest-public.rs:4:14
|
LL | use foo::mem;
| ^^^ private module import
|
note: the module import `mem` is defined here...
--> $DIR/private-std-reexport-suggest-public.rs:8:9
|
LL | use std::mem;
| ^^^^^^^^
note: ...and refers to the module `mem` which is defined here
--> $SRC_DIR/std/src/lib.rs:LL:COL
|
= note: you could import this
help: import `mem` through the re-export
|
LL | use std::mem;
| ~~~~~~~~
```
Fix#42909.
`DefPathData::(ClosureExpr,ImplTrait)` are renamed to match `DefKind::(Closure,OpaqueTy)`.
`DefPathData::ImplTraitAssocTy` is replaced with `DefPathData::TypeNS(kw::Empty)` because both correspond to `DefKind::AssocTy`.
It's possible that introducing `(DefKind,DefPathData)::AssocOpaqueTy` could be a better solution, but that would be a much more invasive change.
Const generic parameters introduced for effects are moved from `DefPathData::TypeNS` to `DefPathData::ValueNS`, because constants are values.
`DefPathData` is no longer passed to `create_def` functions to avoid redundancy.
Currently we always do this:
```
use rustc_fluent_macro::fluent_messages;
...
fluent_messages! { "./example.ftl" }
```
But there is no need, we can just do this everywhere:
```
rustc_fluent_macro::fluent_messages! { "./example.ftl" }
```
which is shorter.
The `fluent_messages!` macro produces uses of
`crate::{D,Subd}iagnosticMessage`, which means that every crate using
the macro must have this import:
```
use rustc_errors::{DiagnosticMessage, SubdiagnosticMessage};
```
This commit changes the macro to instead use
`rustc_errors::{D,Subd}iagnosticMessage`, which avoids the need for the
imports.
feat: make `let_binding_suggestion` more reasonable
This is my first PR for rustc, which trying to fix https://github.com/rust-lang/rust/issues/117894, I am not familiar with some internal api so maybe some modification here isn't the way to go, appreciated for any review suggestion.
When we encounter a function with a return type that has an anonymous
lifetime with no argument to borrow from, besides suggesting the
`'static` lifetime we now also suggest changing the arguments to be
borrows or changing the return type to be an owned type.
```
error[E0106]: missing lifetime specifier
--> $DIR/variadic-ffi-6.rs:7:6
|
LL | ) -> &usize {
| ^ expected named lifetime parameter
|
= help: this function's return type contains a borrowed value, but there is no value for it to be borrowed from
help: consider using the `'static` lifetime, but this is uncommon unless you're returning a borrowed value from a `const` or a `static`
|
LL | ) -> &'static usize {
| +++++++
help: instead, you are more likely to want to change one of the arguments to be borrowed...
|
LL | x: &usize,
| +
help: ...or alternatively, to want to return an owned value
|
LL - ) -> &usize {
LL + ) -> usize {
|
```
Fix#85843.
When using existing fn as module, don't claim it doesn't exist
Tweak wording of module not found in resolve, when the name exists but belongs to a non-`mod` item.
Fix#81232.
When writing a pattern to collect multiple entries of a slice in a
single binding, it is easy to misremember or typo the appropriate syntax
to do so, instead writing the experimental `X..` pattern syntax. When we
encounter a resolve error because `X` isn't available, we suggest
`X @ ..` as an alternative.
```
error[E0425]: cannot find value `rest` in this scope
--> $DIR/range-pattern-meant-to-be-slice-rest-pattern.rs:3:13
|
LL | [1, rest..] => println!("{rest:?}"),
| ^^^^ not found in this scope
|
help: if you meant to collect the rest of the slice in `rest`, use the at operator
|
LL | [1, rest @ ..] => println!("{rest:?}"),
| +
```
Fix#88404.
- Sort dependencies and features sections.
- Add `tidy` markers to the sorted sections so they stay sorted.
- Remove empty `[lib`] sections.
- Remove "See more keys..." comments.
Excluded files:
- rustc_codegen_{cranelift,gcc}, because they're external.
- rustc_lexer, because it has external use.
- stable_mir, because it has external use.
Implement `gen` blocks in the 2024 edition
Coroutines tracking issue https://github.com/rust-lang/rust/issues/43122
`gen` block tracking issue https://github.com/rust-lang/rust/issues/117078
This PR implements `gen` blocks that implement `Iterator`. Most of the logic with `async` blocks is shared, and thus I renamed various types that were referring to `async` specifically.
An example usage of `gen` blocks is
```rust
fn foo() -> impl Iterator<Item = i32> {
gen {
yield 42;
for i in 5..18 {
if i.is_even() { continue }
yield i * 2;
}
}
}
```
The limitations (to be resolved) of the implementation are listed in the tracking issue
Typo suggestion to change bindings with leading underscore
When encountering a binding that isn't found but has a typo suggestion for a binding with a leading underscore, suggest changing the binding definition instead of the use place.
Fix#60164.
When encountering a binding that isn't found but has a typo suggestion
for a binding with a leading underscore, suggest changing the binding
definition instead of the use place.
Fix#60164.
resolve: skip underscore character during candidate lookup
Fixes#116164
In use statement, an underscore is merely a placeholder symbol and does not bind to any name. Therefore, it can be safely ignored.
Don't store lazyness in `DefKind::TyAlias`
1. Don't store lazyness of a type alias in its `DefKind`, but instead via a query.
2. This allows us to treat type aliases as lazy if `#[feature(lazy_type_alias)]` *OR* if the alias contains a TAIT, rather than having checks for both in separate parts of the codebase.
r? `@oli-obk` cc `@fmease`
ConstParamTy: require Eq as supertrait
As discussed with `@BoxyUwu` [on Zulip](https://rust-lang.zulipchat.com/#narrow/stream/260443-project-const-generics/topic/.60ConstParamTy.60.20and.20.60Eq.60).
We want to say that valtree equality on const generic params agrees with `==`, but that only makes sense if `==` actually exists, hence we should have an appropriate bound. Valtree equality is an equivalence relation, so such a type can always be `Eq` and not just `PartialEq`.
`#[diagnostic::on_unimplemented]` without filters
This commit adds support for a `#[diagnostic::on_unimplemented]` attribute with the following options:
* `message` to customize the primary error message
* `note` to add a customized note message to an error message
* `label` to customize the label part of the error message
The relevant behavior is specified in [RFC-3366](https://rust-lang.github.io/rfcs/3366-diagnostic-attribute-namespace.html)
Improve invalid let expression handling
- Move all of the checks for valid let expression positions to parsing.
- Add a field to ExprKind::Let in AST/HIR to mark whether it's in a valid location.
- Suppress some later errors and MIR construction for invalid let expressions.
- Fix a (drop) scope issue that was also responsible for #104172.
Fixes#104172Fixes#104868
This commit adds support for a `#[diagnostic::on_unimplemented]`
attribute with the following options:
* `message` to customize the primary error message
* `note` to add a customized note message to an error message
* `label` to customize the label part of the error message
Co-authored-by: León Orell Valerian Liehr <me@fmease.dev>
Co-authored-by: Michael Goulet <michael@errs.io>
There was an incomplete version of the check in parsing and a second
version in AST validation. This meant that some, but not all, invalid
uses were allowed inside macros/disabled cfgs. It also means that later
passes have a hard time knowing when the let expression is in a valid
location, sometimes causing ICEs.
- Add a field to ExprKind::Let in AST/HIR to mark whether it's in a
valid location.
- Suppress later errors and MIR construction for invalid let
expressions.
Improve diagnostic for generic params from outer items (E0401)
Generalize the wording of E0401 to talk about *outer items* instead of *outer functions* since the current phrasing is outdated. The outer item can be a function, constant, trait, ADT or impl block (see the new UI test for the more exotic examples).
Further, don't suggest introducing generic parameters to constant items unless the feature `generic_const_items` is enabled.
Lastly, make E0401 translatable while we're at it.
Fixes#115720.
Capture lifetimes for associated type bounds destined to be lowered to opaques
Some associated type bounds get lowered to opaques, but they're not represented in the AST as opaques.
That means that we never collect lifetimes for them (`record_lifetime_params_for_impl_trait`) which are used currently for RPITITs, which capture all of their in-scope lifetimes[^1]. This means that the nested RPITITs that arise from some type like `impl Foo<Type: Bar>` (~> `impl Foo<Type = impl Bar>`) don't capture any lifetimes, leading to ICEs.
This PR makes sure we collect the lifetimes for associated type bounds as well, and make sure that they are set up correctly for opaque type lowering later.
Fixes#115360
[^1]: #114489
resolve: Stop creating `NameBinding`s on every use, create them once per definition instead
`NameBinding` values are supposed to be unique, use referential equality, and be created once for every name declaration.
Before this PR many `NameBinding`s were created on name use, rather than on name declaration, because it's sufficiently cheap, and comparisons are not actually used in practice for some binding kinds.
This PR makes `NameBinding`s consistently unique and created on name declaration.
There are two special cases
- for extern prelude names creating `NameBinding` requires loading the corresponding crate, which is expensive, so such bindings are created lazily on first use, but they still keep the uniqueness by being reused on further uses.
- for legacy derive helpers (helper attributes written before derives that introduce them) the declaration and the use is basically the same thing (that's one of the reasons why they are deprecated), so they are still created on use, but we can still maybe do a bit better in a way that I described in FIXME in the last commit.
Warn on elided lifetimes in associated constants (`ELIDED_LIFETIMES_IN_ASSOCIATED_CONSTANT`)
Elided lifetimes in associated constants (in impls) erroneously resolve to fresh lifetime parameters on the impl since #97313. This is not correct behavior (see #38831).
I originally opened #114716 to fix this, but given the time that has passed, the crater results seem pretty bad: https://github.com/rust-lang/rust/pull/114716#issuecomment-1682091952
This PR alternatively implements a lint against this behavior, and I'm hoping to bump this to deny in a few versions.