deref patterns: lower deref patterns to MIR
This lowers deref patterns to MIR. This is a bit tricky because this is the first kind of pattern that requires storing a value in a temporary. Thanks to https://github.com/rust-lang/rust/pull/123324 false edges are no longer a problem.
The thing I'm not confident about is the handling of fake borrows. This PR ignores any fake borrows inside a deref pattern. We are guaranteed to at least fake borrow the place of the first pointer value, which could be enough, but I'm not certain.
Add simple async drop glue generation
This is a prototype of the async drop glue generation for some simple types. Async drop glue is intended to behave very similar to the regular drop glue except for being asynchronous. Currently it does not execute synchronous drops but only calls user implementations of `AsyncDrop::async_drop` associative function and awaits the returned future. It is not complete as it only recurses into arrays, slices, tuples, and structs and does not have same sensible restrictions as the old `Drop` trait implementation like having the same bounds as the type definition, while code assumes their existence (requires a future work).
This current design uses a workaround as it does not create any custom async destructor state machine types for ADTs, but instead uses types defined in the std library called future combinators (deferred_async_drop, chain, ready_unit).
Also I recommend reading my [explainer](https://zetanumbers.github.io/book/async-drop-design.html).
This is a part of the [MCP: Low level components for async drop](https://github.com/rust-lang/compiler-team/issues/727) work.
Feature completeness:
- [x] `AsyncDrop` trait
- [ ] `async_drop_in_place_raw`/async drop glue generation support for
- [x] Trivially destructible types (integers, bools, floats, string slices, pointers, references, etc.)
- [x] Arrays and slices (array pointer is unsized into slice pointer)
- [x] ADTs (enums, structs, unions)
- [x] tuple-like types (tuples, closures)
- [ ] Dynamic types (`dyn Trait`, see explainer's [proposed design](https://github.com/zetanumbers/posts/blob/main/async-drop-design.md#async-drop-glue-for-dyn-trait))
- [ ] coroutines (https://github.com/rust-lang/rust/pull/123948)
- [x] Async drop glue includes sync drop glue code
- [x] Cleanup branch generation for `async_drop_in_place_raw`
- [ ] Union rejects non-trivially async destructible fields
- [ ] `AsyncDrop` implementation requires same bounds as type definition
- [ ] Skip trivially destructible fields (optimization)
- [ ] New [`TyKind::AdtAsyncDestructor`](https://github.com/zetanumbers/posts/blob/main/async-drop-design.md#adt-async-destructor-types) and get rid of combinators
- [ ] [Synchronously undroppable types](https://github.com/zetanumbers/posts/blob/main/async-drop-design.md#exclusively-async-drop)
- [ ] Automatic async drop at the end of the scope in async context
Add support to intrinsics fallback body
Before this fix, the call to `body()` would crash, since `has_body()` would return true, but we would try to retrieve the body of an intrinsic which is not allowed.
Instead, the `Instance::body()` function will now convert an Intrinsic into an Item before retrieving its body.
Note: I also changed how we monomorphize the instance body. Unfortunately, the call still ICE for some shims.
r? `@oli-obk`
Before this fix, the call to `body()` would crash, since `has_body()`
would return true, but we would try to retrieve the body of an intrinsic
which is not allowed.
Instead, the `Instance::body()` function will now convert an Intrinsic
into an Item before retrieving its body.
rename ptr::from_exposed_addr -> ptr::with_exposed_provenance
As discussed on [Zulip](https://rust-lang.zulipchat.com/#narrow/stream/136281-t-opsem/topic/To.20expose.20or.20not.20to.20expose/near/427757066).
The old name, `from_exposed_addr`, makes little sense as it's not the address that is exposed, it's the provenance. (`ptr.expose_addr()` stays unchanged as we haven't found a better option yet. The intended interpretation is "expose the provenance and return the address".)
The new name nicely matches `ptr::without_provenance`.
Add `Ord::cmp` for primitives as a `BinOp` in MIR
Update: most of this OP was written months ago. See https://github.com/rust-lang/rust/pull/118310#issuecomment-2016940014 below for where we got to recently that made it ready for review.
---
There are dozens of reasonable ways to implement `Ord::cmp` for integers using comparison, bit-ops, and branches. Those differences are irrelevant at the rust level, however, so we can make things better by adding `BinOp::Cmp` at the MIR level:
1. Exactly how to implement it is left up to the backends, so LLVM can use whatever pattern its optimizer best recognizes and cranelift can use whichever pattern codegens the fastest.
2. By not inlining those details for every use of `cmp`, we drastically reduce the amount of MIR generated for `derive`d `PartialOrd`, while also making it more amenable to MIR-level optimizations.
Having extremely careful `if` ordering to μoptimize resource usage on broadwell (#63767) is great, but it really feels to me like libcore is the wrong place to put that logic. Similarly, using subtraction [tricks](https://graphics.stanford.edu/~seander/bithacks.html#CopyIntegerSign) (#105840) is arguably even nicer, but depends on the optimizer understanding it (https://github.com/llvm/llvm-project/issues/73417) to be practical. Or maybe [bitor is better than add](https://discourse.llvm.org/t/representing-in-ir/67369/2?u=scottmcm)? But maybe only on a future version that [has `or disjoint` support](https://discourse.llvm.org/t/rfc-add-or-disjoint-flag/75036?u=scottmcm)? And just because one of those forms happens to be good for LLVM, there's no guarantee that it'd be the same form that GCC or Cranelift would rather see -- especially given their very different optimizers. Not to mention that if LLVM gets a spaceship intrinsic -- [which it should](https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/Suboptimal.20inlining.20in.20std.20function.20.60binary_search.60/near/404250586) -- we'll need at least a rustc intrinsic to be able to call it.
As for simplifying it in Rust, we now regularly inline `{integer}::partial_cmp`, but it's quite a large amount of IR. The best way to see that is with 8811efa88b (diff-d134c32d028fbe2bf835fef2df9aca9d13332dd82284ff21ee7ebf717bfa4765R113) -- I added a new pre-codegen MIR test for a simple 3-tuple struct, and this PR change it from 36 locals and 26 basic blocks down to 24 locals and 8 basic blocks. Even better, as soon as the construct-`Some`-then-match-it-in-same-BB noise is cleaned up, this'll expose the `Cmp == 0` branches clearly in MIR, so that an InstCombine (#105808) can simplify that to just a `BinOp::Eq` and thus fix some of our generated code perf issues. (Tracking that through today's `if a < b { Less } else if a == b { Equal } else { Greater }` would be *much* harder.)
---
r? `@ghost`
But first I should check that perf is ok with this
~~...and my true nemesis, tidy.~~
Fix misc printing issues in emit=stable_mir
Trying to continue the work that ````@ouz-a```` started here: https://github.com/rust-lang/rust/pull/118364
Few modifications beyond fixes:
1. I made the `pretty_*` functions private.
2. I added a function to print the instance body
3. Changed a bunch of signatures to write to the writer directly.
4. Added a function to translate the place to its internal representation, so we could use the internal debug implementation.
5. Also removed `pretty_ty`, replaced by Display implementation of Ty which uses the internal display.
Add methods to create StableMIR constant
I've been experimenting with transforming the StableMIR to instrument the code with potential UB checks.
The modified body will only be used by our analysis tool, however, constants in StableMIR must be backed by rustc constants. Thus, I'm adding a few functions to build constants, such as building string and other primitives.
One question I have is whether we should create a global allocation instead for strings.
r? ``````@oli-obk``````
Fix StableMIR `WrappingRange::is_full` computation
`WrappingRange::is_full` computation assumed that to be full the range couldn't wrap, which is not necessarily true.
For example, a range of 1..=0 is a valid representation of a full wrapping range.
`WrappingRange::is_full` computation assumed that to be full the range
couldn't wrap, which is not necessarily true.
For example, a range of 1..=0 is a valid representation of a full
wrapping range.
Add `intrinsic_name` to get plain intrinsic name
Add an `intrinsic_name` API to retrieve the plain intrinsic name. The plain name does not include type arguments (as `trimmed_name` does), which is more convenient to match with intrinsic symbols.
I've been experimenting with transforming the StableMIR to instrument
the code with potential UB checks. The modified body will only
be used by our analysis tool, however, constants in StableMIR must be
backed by rustc constants. Thus, I'm adding a few functions to build
constants, such as building string and other primitives.
`CompilerError` has `CompilationFailed` and `ICE` variants, which seems
reasonable at first. But the way it identifies them is flawed:
- If compilation errors out, i.e. `RunCompiler::run` returns an `Err`,
it uses `CompilationFailed`, which is reasonable.
- If compilation panics with `FatalError`, it catches the panic and uses
`ICE`. This is sometimes right, because ICEs do cause `FatalError`
panics, but sometimes wrong, because certain compiler errors also
cause `FatalError` panics. (The compiler/rustdoc/clippy/whatever just
catches the `FatalError` with `catch_with_exit_code` in `main`.)
In other words, certain non-ICE compilation failures get miscategorized
as ICEs. It's not possible to reliably distinguish the two cases, so
this commit merges them. It also renames the combined variant as just
`Failed`, to better match the existing `Interrupted` and `Skipped`
variants.
Here is an example of a non-ICE failure that causes a `FatalError`
panic, from `tests/ui/recursion_limit/issue-105700.rs`:
```
#![recursion_limit="4"]
#![invalid_attribute]
#![invalid_attribute]
#![invalid_attribute]
#![invalid_attribute]
#![invalid_attribute]
//~^ERROR recursion limit reached while expanding
fn main() {{}}
```
Add more information to `visit_projection_elem`
Without the starting place, it's hard to retrieve any useful information from visiting a projection.
Note: I still need to add a test.
Add method to get instance instantiation arguments
Add a method to get the instance instantiation arguments, and include that information in the instance debug.
Add function ABI and type layout to StableMIR
This change introduces a new module to StableMIR named `abi` with information from `rustc_target::abi` and `rustc_abi`, that allow users to retrieve more low level information required to perform bit-precise analysis.
The layout of a type can be retrieved via `Ty::layout`, and the instance ABI can be retrieved via `Instance::fn_abi()`.
To properly handle errors while retrieve layout information, we had to implement a few layout related traits.
r? ```@compiler-errors```
This change introduces a new module to StableMIR named `abi` with
information from `rustc_target::abi` and `rustc_abi`, that allow users
to retrieve more low level information required to perform
bit-precise analysis.
The layout of a type can be retrieved via `Ty::layout`, and the instance
ABI can be retrieved via `Instance::fn_abi()`.
To properly handle errors while retrieve layout information, we had
to implement a few layout related traits.
Erase late bound regions from `Instance::fn_sig()` and add a few more details to StableMIR APIs
The Instance `fn_sig()` still included a late bound regions which needed a new compiler function in order to be erased. I've also bundled the following small fixes in this PR, let me know if you want me to isolate any of them.
- Add missing `CoroutineKind::AsyncGen`.
- Add optional spread argument to function body which is needed to properly analyze compiler shims.
- Add a utility method to iterate over all locals together with their declaration.
- Add a method to get the description of `AssertMessage`*.
* For the last one, we could consider eventually calling the internal `AssertKind::description()` to avoid code duplication. However, we still don't have ways to convert `AssertMessage`, `Operand`, `Place` and others, in order to use that. The other downside of using the internal method is that it will panic for some of the variants.
r ? `@ouz-a`
- Remove `fn_sig()` from Instance.
- Change return value of `AssertMessage::description` to `Cow<>`.
- Add assert to instance `ty()`.
- Generalize uint / int type creation.
Fix BinOp `ty()` assertion and `fn_sig()` for closures
`BinOp::ty()` was asserting that the argument types were primitives. However, the primitive check doesn't include pointers, which can be used in a `BinaryOperation`. Thus extend the arguments to include them.
Since I had to add methods to check for pointers in TyKind, I just went ahead and added a bunch more utility checks that can be handy for our users and fixed the `fn_sig()` method to also include closures.
`@compiler-errors` just wanted to confirm that today no `BinaryOperation` accept SIMD types. Is that correct?
r? `@compiler-errors`
detects redundant imports that can be eliminated.
for #117772 :
In order to facilitate review and modification, split the checking code and
removing redundant imports code into two PR.
The instance evaluation is needed to handle intrinsics such as
`type_id` and `type_name`.
Since we now use Allocation to represent all evaluated constants,
provide a few methods to help process the data inside an allocation.
Add method to get type of an Rvalue in StableMIR
Provide a method to StableMIR users to retrieve the type of an Rvalue operation. There were two possible implementation:
1. Create the logic inside stable_mir to process the type according to the Rvalue semantics, which duplicates the logic of `rustc_middle::mir::Rvalue::ty()`.
2. Implement the Rvalue translation from StableMIR back to internal representation, invoke the `rustc_middle::mir::Rvalue::ty()`, and translate the return value to StableMIR.
I chose the first one for now since the duplication was fairly small, and the option 2 would require way more work to translate everything back to rustc internal representation. If we eventually add those translations, we could easily swap to the option 2.
```@compiler-errors``` / ```@ouz-a``` Please let me know if you have any strong opinion here.
r? ```@compiler-errors```
Fix is_foreign_item for StableMIR instance
Change the implementation of `Instance::is_foreign_item` to directly query the compiler for the instance `def_id` instead of incorrectly relying on the conversion to `CrateItem`. I also added a method to check if the instance has body, since the function already existed and it just wasn't exposed via public APIs. This makes it much cheaper for the user to check if the instance has body.
## Background:
- In pull https://github.com/rust-lang/rust/pull/118524, I fixed the conversion from Instance to CrateItem to avoid the conversion if the instance didn't have a body available. This broke the `is_foreign_item`.
r? `@ouz-a`
Change the implementation of `Instance::is_foreign_item` to directly
query the compiler for the instance `def_id` instead of incorrectly
relying on the conversion to `CrateItem`.
Background:
- In pull https://github.com/rust-lang/rust/pull/118524, I fixed the
conversion from Instance to CrateItem to avoid the conversion if the
instance didn't have a body available. This broke the `is_foreign_item`.
Although, we would like to avoid crashes whenever
possible, and that's why I wanted to make this API fallible. It's
looking pretty hard to do proper validation.
I think many of our APIs will unfortunately depend on the user doing
the correct thing since at the MIR level we are working on,
we expect types to have been checked already.