Explicitly reject negative and reservation drop impls
Fixes#110858
It doesn't really make sense for a type to have a `!Drop` impl. Or at least, I don't want us to implicitly assign a meaning to it by the way the compiler *currently* handles it (incompletely), and rather I would like to see a PR (or an RFC...) assign a meaning to `!Drop` if we actually wanted one for it.
Implement negative bounds for internal testing purposes
Implements partial support the `!` negative polarity on trait bounds. This is incomplete, but should allow us to at least be able to play with the feature.
Not even gonna consider them as a public-facing feature, but I'm implementing them because would've been nice to have in UI tests, for example in #110671.
Currently a `{D,Subd}iagnosticMessage` can be created from any type that
impls `Into<String>`. That includes `&str`, `String`, and `Cow<'static,
str>`, which are reasonable. It also includes `&String`, which is pretty
weird, and results in many places making unnecessary allocations for
patterns like this:
```
self.fatal(&format!(...))
```
This creates a string with `format!`, takes a reference, passes the
reference to `fatal`, which does an `into()`, which clones the
reference, doing a second allocation. Two allocations for a single
string, bleh.
This commit changes the `From` impls so that you can only create a
`{D,Subd}iagnosticMessage` from `&str`, `String`, or `Cow<'static,
str>`. This requires changing all the places that currently create one
from a `&String`. Most of these are of the `&format!(...)` form
described above; each one removes an unnecessary static `&`, plus an
allocation when executed. There are also a few places where the existing
use of `&String` was more reasonable; these now just use `clone()` at
the call site.
As well as making the code nicer and more efficient, this is a step
towards possibly using `Cow<'static, str>` in
`{D,Subd}iagnosticMessage::{Str,Eager}`. That would require changing
the `From<&'a str>` impls to `From<&'static str>`, which is doable, but
I'm not yet sure if it's worthwhile.
Fix elaboration with associated type bounds
When computing a trait's supertrait predicates, do not add any associated type *trait* bounds to that list of supertrait predicates. This is because supertrait predicates are expected to have the same `Self` type as the trait.
For example, given:
```rust
trait Foo: Bar<Assoc: Send>
```
Before, we would compute that the supertrait predicates of `T: Foo` are `T: Bar` and `<T as Bar>::Assoc: Send`. However, the last bound is a trait predicate for a totally different type than `T`, and existing code that uses supertrait bounds such as vtable construction, closure fn signature deduction, etc. all rely on the invariant that we have a list of predicates for self type `T`.
Fixes#76593
The reason for all the extra diagnostic noise is that we're recomputing predicates with a different filter now. These diagnostics should be deduplicated for any end-user though.
---
This does bring up an interesting question -- is the predicate `<T as Bar>::Assoc: Send` an implied bound of `T: Foo`? Because currently the only bounds implied by a (non-alias) trait are its supertraits. I guess I could fix this too, but it would require even more changes, and I'm inclined to punt this question along.
Add `ConstParamTy` trait
This is a bit sketch, but idk.
r? `@BoxyUwU`
Yet to be done:
- [x] ~~Figure out if it's okay to implement `StructuralEq` for primitives / possibly remove their special casing~~ (it should be okay, but maybe not in this PR...)
- [ ] Maybe refactor the code a little bit
- [x] Use a macro to make impls a bit nicer
Future work:
- [ ] Actually™ use the trait when checking if a `const` generic type is allowed
- [ ] _Really_ refactor the surrounding code
- [ ] Refactor `marker.rs` into multiple modules for each "theme" of markers
Use MIR's `Offset` for pointer `add` too
~~Status: draft while waiting for #110822 to land, since this is built atop that.~~
~~r? `@ghost~~`
Canonical Rust code has mostly moved to `add`/`sub` on pointers, which take `usize`, instead of `offset` which takes `isize`. (And, relatedly, when `sub_ptr` was added it turned out it replaced every single in-tree use of `offset_from`, because `usize` is just so much more useful than `isize` in Rust.)
Unfortunately, `intrinsics::offset` could only accept `*const` and `isize`, so there's a *huge* amount of type conversions back and forth being done. They're identity conversions in the backend, but still end up producing quite a lot of unhelpful MIR.
This PR changes `intrinsics::offset` to accept `*const` *and* `*mut` along with `isize` *and* `usize`. Conveniently, the backends and CTFE already handle this, since MIR's `BinOp::Offset` [already supports all four combinations](adaac6b166/compiler/rustc_const_eval/src/transform/validate.rs (L523-L528)).
To demonstrate the difference, I added some `mir-opt/pre-codegen/` tests around slice indexing. Here's the difference to `[T]::get_mut`, since it uses `<*mut _>::add` internally:
```diff
`@@` -79,30 +70,21 `@@` fn slice_get_mut_usize(_1: &mut [u32], _2: usize) -> Option<&mut u32> {
StorageLive(_12); // scope 3 at $SRC_DIR/core/src/slice/index.rs:LL:COL
StorageLive(_9); // scope 6 at $SRC_DIR/core/src/slice/index.rs:LL:COL
_9 = _8 as *mut u32 (PtrToPtr); // scope 11 at $SRC_DIR/core/src/ptr/mut_ptr.rs:LL:COL
- StorageLive(_13); // scope 13 at $SRC_DIR/core/src/ptr/mut_ptr.rs:LL:COL
- _13 = _2 as isize (IntToInt); // scope 13 at $SRC_DIR/core/src/ptr/mut_ptr.rs:LL:COL
- StorageLive(_14); // scope 15 at $SRC_DIR/core/src/ptr/mut_ptr.rs:LL:COL
- StorageLive(_15); // scope 15 at $SRC_DIR/core/src/ptr/mut_ptr.rs:LL:COL
- _15 = _9 as *const u32 (Pointer(MutToConstPointer)); // scope 15 at $SRC_DIR/core/src/ptr/mut_ptr.rs:LL:COL
- _14 = Offset(move _15, _13); // scope 15 at $SRC_DIR/core/src/ptr/mut_ptr.rs:LL:COL
- StorageDead(_15); // scope 15 at $SRC_DIR/core/src/ptr/mut_ptr.rs:LL:COL
- _7 = move _14 as *mut u32 (PtrToPtr); // scope 15 at $SRC_DIR/core/src/ptr/mut_ptr.rs:LL:COL
- StorageDead(_14); // scope 15 at $SRC_DIR/core/src/ptr/mut_ptr.rs:LL:COL
- StorageDead(_13); // scope 13 at $SRC_DIR/core/src/ptr/mut_ptr.rs:LL:COL
+ _7 = Offset(_9, _2); // scope 13 at $SRC_DIR/core/src/ptr/mut_ptr.rs:LL:COL
StorageDead(_9); // scope 6 at $SRC_DIR/core/src/slice/index.rs:LL:COL
StorageDead(_12); // scope 3 at $SRC_DIR/core/src/slice/index.rs:LL:COL
StorageDead(_11); // scope 3 at $SRC_DIR/core/src/slice/index.rs:LL:COL
```
1c1c8e442a (diff-a841b6a4538657add3f39bc895744331453d0625e7aace128b1f604f0b63c8fdR80)
Add lint to deny diagnostics composed of static strings
r? ghost
I'm hoping to have a lint that semi-automatically converts simple diagnostics such as `struct_span_err(span, "msg").help("msg").span_note(span2, "msg").emit()` to typed session diagnostics. It's quite hacky and not entirely working because of problems with `x fix` but should hopefully help reduce some of the work.
I'm going to start trying to apply what I can from this, but opening this as a draft in case anyone wants to develop on it.
cc #100717
Switch to `EarlyBinder` for `explicit_item_bounds`
Part of the work to finish https://github.com/rust-lang/rust/issues/105779.
This PR adds `EarlyBinder` to the return type of the `explicit_item_bounds` query and removes `bound_explicit_item_bounds`.
r? `@compiler-errors` (hope it's okay to request you, since you reviewed #110299 and #110498😃)
Add `intrinsics::transmute_unchecked`
This takes a whole 3 lines in `compiler/` since it lowers to `CastKind::Transmute` in MIR *exactly* the same as the existing `intrinsics::transmute` does, it just doesn't have the fancy checking in `hir_typeck`.
Added to enable experimenting with the request in <https://github.com/rust-lang/rust/pull/106281#issuecomment-1496648190> and because the portable-simd folks might be interested for dependently-sized array-vector conversions.
It also simplifies a couple places in `core`.
See also https://github.com/rust-lang/rust/pull/108442#issuecomment-1474777273, where `CastKind::Transmute` was added having exactly these semantics before the lang meeting (which I wasn't in) independently expressed interest.
This takes a whole 3 lines in `compiler/` since it lowers to `CastKind::Transmute` in MIR *exactly* the same as the existing `intrinsics::transmute` does, it just doesn't have the fancy checking in `hir_typeck`.
Added to enable experimenting with the request in <https://github.com/rust-lang/rust/pull/106281#issuecomment-1496648190> and because the portable-simd folks might be interested for dependently-sized array-vector conversions.
It also simplifies a couple places in `core`.
Allow to feed a value in another query's cache and remove `WithOptConstParam`
I used it to remove `WithOptConstParam` queries, as an example.
The idea is that a query (here `typeck(function)`) can write into another query's cache (here `type_of(anon const)`). The dependency node for `type_of` would depend on all the current dependencies of `typeck`.
There is still an issue with cycles: if `type_of(anon const)` is accessed before `typeck(function)`, we will still have the usual cycle. The way around this issue is to `ensure` that `typeck(function)` is called before accessing `type_of(anon const)`.
When replayed, we may the following cases:
- `typeck` is green, in that case `type_of` is green too, and all is right;
- `type_of` is green, `typeck` may still be marked as red (it depends on strictly more things than `type_of`) -> we verify that the saved value and the re-computed value of `type_of` have the same hash;
- `type_of` is red, then `typeck` is red -> it's the caller responsibility to ensure `typeck` is recomputed *before* `type_of`.
As `anon consts` have their own `DefPathData`, it's not possible to have the def-id of the anon-const point to something outside the original function, but the general case may have to be resolved before using this device more broadly.
There is an open question about loading from the on-disk cache. If `typeck` is loaded from the on-disk cache, the side-effect does not happen. The regular `type_of` implementation can go and fetch the correct value from the decoded `typeck` results, and the dep-graph will check that the hashes match, but I'm not sure we want to rely on this behaviour.
I specifically allowed to feed the value to `type_of` from inside a call to `type_of`. In that case, the dep-graph will check that the fingerprints of both values match.
This implementation is still very sensitive to cycles, and requires that we call `typeck(function)` before `typeck(anon const)`. The reason is that `typeck(anon const)` calls `type_of(anon const)`, which calls `typeck(function)`, which feeds `type_of(anon const)`, and needs to build the MIR so needs `typeck(anon const)`. The latter call would not cycle, since `type_of(anon const)` has been set, but I'd rather not remove the cycle check.
Substitute missing trait items suggestion correctly
Properly substitute missing item suggestions, so that when they reference generics from their parent trait they actually have the right time for the impl.
Also, some other minor tweaks like using `/* Type */` to signify a GAT's type is actually missing, and fixing generic arg suggestions for GATs in general.
Add `rustc_fluent_macro` to decouple fluent from `rustc_macros`
Fluent, with all the icu4x it brings in, takes quite some time to compile. `fluent_messages!` is only needed in further downstream rustc crates, but is blocking more upstream crates like `rustc_index`. By splitting it out, we allow `rustc_macros` to be compiled earlier, which speeds up `x check compiler` by about 5 seconds (and even more after the needless dependency on `serde_json` is removed from `rustc_data_structures`).