Add well known values to `--check-cfg` implementation
This pull-request adds well known values for the well known names via `--check-cfg=values()`.
[RFC 3013: Checking conditional compilation at compile time](https://rust-lang.github.io/rfcs/3013-conditional-compilation-checking.html#checking-conditional-compilation-at-compile-time) doesn't define this at all, but this seems a nice improvement.
The activation is done by a empty `values()` (new syntax) similar to `names()` except that `names(foo)` also activate well known names while `values(aa, "aa", "kk")` would not.
As stated this use a different activation logic because well known values for the well known names are not always sufficient.
In fact this is problematic for every `target_*` cfg because of non builtin targets, as the current implementation use those built-ins targets to create the list the well known values.
The implementation is straight forward, first we gather (if necessary) all the values (lazily or not) and then we apply them.
r? ```@petrochenkov```
This change adds a flag for configuring control-flow protection in the
LLVM backend. In Clang, this flag is exposed as `-fcf-protection` with
options `none|branch|return|full`. This convention is followed for
`rustc`, though as a codegen option: `rustc -Z
cf-protection=<none|branch|return|full>`.
Co-authored-by: BlackHoleFox <blackholefoxdev@gmail.com>
This option introduced in #15820 allows a custom crate to be imported in
the place of std, but with the name std. I don't think there is any
value to this. At most it is confusing users of a driver that uses this option. There are no users of
this option on github. If anyone still needs it, they can emulate it
injecting #![no_core] in addition to their own prelude.
Stabilize `-Z instrument-coverage` as `-C instrument-coverage`
(Tracking issue for `instrument-coverage`: https://github.com/rust-lang/rust/issues/79121)
This PR stabilizes support for instrumentation-based code coverage, previously provided via the `-Z instrument-coverage` option. (Continue supporting `-Z instrument-coverage` for compatibility for now, but show a deprecation warning for it.)
Many, many people have tested this support, and there are numerous reports of it working as expected.
Move the documentation from the unstable book to stable rustc documentation. Update uses and documentation to use the `-C` option.
Addressing questions raised in the tracking issue:
> If/when stabilized, will the compiler flag be updated to -C instrument-coverage? (If so, the -Z variant could also be supported for some time, to ease migrations for existing users and scripts.)
This stabilization PR updates the option to `-C` and keeps the `-Z` variant to ease migration.
> The Rust coverage implementation depends on (and automatically turns on) -Z symbol-mangling-version=v0. Will stabilizing this feature depend on stabilizing v0 symbol-mangling first? If so, what is the current status and timeline?
This stabilization PR depends on https://github.com/rust-lang/rust/pull/90128 , which stabilizes `-C symbol-mangling-version=v0` (but does not change the default symbol-mangling-version).
> The Rust coverage implementation implements the latest version of LLVM's Coverage Mapping Format (version 4), which forces a dependency on LLVM 11 or later. A compiler error is generated if attempting to compile with coverage, and using an older version of LLVM.
Given that LLVM 13 has now been released, requiring LLVM 11 for coverage support seems like a reasonable requirement. If people don't have at least LLVM 11, nothing else breaks; they just can't use coverage support. Given that coverage support currently requires a nightly compiler and LLVM 11 or newer, allowing it on a stable compiler built with LLVM 11 or newer seems like an improvement.
The [tracking issue](https://github.com/rust-lang/rust/issues/79121) and the [issue label A-code-coverage](https://github.com/rust-lang/rust/labels/A-code-coverage) link to a few open issues related to `instrument-coverage`, but none of them seem like showstoppers. All of them seem like improvements and refinements we can make after stabilization.
The original `-Z instrument-coverage` support went through a compiler-team MCP at https://github.com/rust-lang/compiler-team/issues/278 . Based on that, `@pnkfelix` suggested that this needed a stabilization PR and a compiler-team FCP.
Stabilize `-Z print-link-args` as `--print link-args`
We have stable options for adding linker arguments; we should have a
stable option to help debug linker arguments.
Add documentation for the new option. In the documentation, make it clear that
the *exact* format of the output is not a stable guarantee.
In #79570, `-Z split-dwarf-kind={none,single,split}` was replaced by `-C
split-debuginfo={off,packed,unpacked}`. `-C split-debuginfo`'s packed
and unpacked aren't exact parallels to single and split, respectively.
On Unix, `-C split-debuginfo=packed` will put debuginfo into object
files and package debuginfo into a DWARF package file (`.dwp`) and
`-C split-debuginfo=unpacked` will put debuginfo into dwarf object files
and won't package it.
In the initial implementation of Split DWARF, split mode wrote sections
which did not require relocation into a DWARF object (`.dwo`) file which
was ignored by the linker and then packaged those DWARF objects into
DWARF packages (`.dwp`). In single mode, sections which did not require
relocation were written into object files but ignored by the linker and
were not packaged. However, both split and single modes could be
packaged or not, the primary difference in behaviour was where the
debuginfo sections that did not require link-time relocation were
written (in a DWARF object or the object file).
This commit re-introduces a `-Z split-dwarf-kind` flag, which can be
used to pick between split and single modes when `-C split-debuginfo` is
used to enable Split DWARF (either packed or unpacked).
Signed-off-by: David Wood <david.wood@huawei.com>
These options primarily exist to work around bugs, and those bugs have
largely been fixed. Avoid stabilizing them, so that we don't have to
support them indefinitely.
Continue supporting -Z instrument-coverage for compatibility for now,
but show a deprecation warning for it.
Update uses and documentation to use the -C option.
Move the documentation from the unstable book to stable rustc
documentation.
This allows selecting `v0` symbol-mangling without an unstable option.
Selecting `legacy` still requires -Z unstable-options.
Continue supporting -Z symbol-mangling-version for compatibility for
now, but show a deprecation warning for it.
Add codegen option for branch protection and pointer authentication on AArch64
The branch-protection codegen option enables the use of hint-space pointer
authentication code for AArch64 targets.
LLVM has built-in heuristics for adding stack canaries to functions. These
heuristics can be selected with LLVM function attributes. This patch adds a
rustc option `-Z stack-protector={none,basic,strong,all}` which controls the use
of these attributes. This gives rustc the same stack smash protection support as
clang offers through options `-fno-stack-protector`, `-fstack-protector`,
`-fstack-protector-strong`, and `-fstack-protector-all`. The protection this can
offer is demonstrated in test/ui/abi/stack-protector.rs. This fills a gap in the
current list of rustc exploit
mitigations (https://doc.rust-lang.org/rustc/exploit-mitigations.html),
originally discussed in #15179.
Stack smash protection adds runtime overhead and is therefore still off by
default, but now users have the option to trade performance for security as they
see fit. An example use case is adding Rust code in an existing C/C++ code base
compiled with stack smash protection. Without the ability to add stack smash
protection to the Rust code, the code base artifacts could be exploitable in
ways not possible if the code base remained pure C/C++.
Stack smash protection support is present in LLVM for almost all the current
tier 1/tier 2 targets: see
test/assembly/stack-protector/stack-protector-target-support.rs. The one
exception is nvptx64-nvidia-cuda. This patch follows clang's example, and adds a
warning message printed if stack smash protection is used with this target (see
test/ui/stack-protector/warn-stack-protector-unsupported.rs). Support for tier 3
targets has not been checked.
Since the heuristics are applied at the LLVM level, the heuristics are expected
to add stack smash protection to a fraction of functions comparable to C/C++.
Some experiments demonstrating how Rust code is affected by the different
heuristics can be found in
test/assembly/stack-protector/stack-protector-heuristics-effect.rs. There is
potential for better heuristics using Rust-specific safety information. For
example it might be reasonable to skip stack smash protection in functions which
transitively only use safe Rust code, or which uses only a subset of functions
the user declares safe (such as anything under `std.*`). Such alternative
heuristics could be added at a later point.
LLVM also offers a "safestack" sanitizer as an alternative way to guard against
stack smashing (see #26612). This could possibly also be included as a
stack-protection heuristic. An alternative is to add it as a sanitizer (#39699).
This is what clang does: safestack is exposed with option
`-fsanitize=safe-stack`.
The options are only supported by the LLVM backend, but as with other codegen
options it is visible in the main codegen option help menu. The heuristic names
"basic", "strong", and "all" are hopefully sufficiently generic to be usable in
other backends as well.
Reviewed-by: Nikita Popov <nikic@php.net>
Extra commits during review:
- [address-review] make the stack-protector option unstable
- [address-review] reduce detail level of stack-protector option help text
- [address-review] correct grammar in comment
- [address-review] use compiler flag to avoid merging functions in test
- [address-review] specify min LLVM version in fortanix stack-protector test
Only for Fortanix test, since this target specifically requests the
`--x86-experimental-lvi-inline-asm-hardening` flag.
- [address-review] specify required LLVM components in stack-protector tests
- move stack protector option enum closer to other similar option enums
- rustc_interface/tests: sort debug option list in tracking hash test
- add an explicit `none` stack-protector option
Revert "set LLVM requirements for all stack protector support test revisions"
This reverts commit a49b74f92a4e7d701d6f6cf63d207a8aff2e0f68.
Leave -Z strip available temporarily as an alias, to avoid breaking
cargo until cargo transitions to using -C strip. (If the user passes
both, the -C version wins.)
Added the --temps-dir option
Fixes#10971.
The new `--temps-dir` option puts intermediate files in a user-specified directory. This provides a fix for the issue where parallel invocations of rustc would overwrite each other's intermediate files.
No files are kept in the intermediate directory unless `-C save-temps=yes`.
If additional files are specifically requested using `--emit asm,llvm-bc,llvm-ir,obj,metadata,link,dep-info,mir`, these will be put in the output directory rather than the intermediate directory.
This is a backward-compatible change, i.e. if `--temps-dir` is not specified, the behavior is the same as before.
This largely involves implementing the options debug-info-for-profiling
and profile-sample-use and forwarding them on to LLVM.
AutoFDO can be used on x86-64 Linux like this:
rustc -O -Cdebug-info-for-profiling main.rs -o main
perf record -b ./main
create_llvm_prof --binary=main --out=code.prof
rustc -O -Cprofile-sample-use=code.prof main.rs -o main2
Now `main2` will have feedback directed optimization applied to it.
The create_llvm_prof tool can be obtained from this github repository:
https://github.com/google/autofdoFixes#64892.
Fixes#85019
A `SourceFile` created during compilation may have a relative
path (e.g. if rustc itself is invoked with a relative path).
When we write out crate metadata, we convert all relative paths
to absolute paths using the current working direction.
However, the working directory is not included in the crate hash.
This means that the crate metadata can change while the crate
hash remains the same. Among other problems, this can cause a
fingerprint mismatch ICE, since incremental compilation uses
the crate metadata hash to determine if a foreign query is green.
This commit moves the field holding the working directory from
`Session` to `Options`, including it as part of the crate hash.
Fix feature gate checking of static-nobundle and native_link_modifiers
Feature native_link_modifiers_bundle don't need feature static-nobundle
to work.
Also check the feature gates when using native_link_modifiers from command line options. Current nighly compiler don't check those feature gate.
```
> touch lib.rs
> rustc +nightly lib.rs -L /usr/lib -l static:+bundle=dl --crate-type=rlib
> rustc +nightly lib.rs -L /usr/lib -l dylib:+as-needed=dl --crate-type=dylib -Ctarget-feature=-crt-static
> rustc +nightly lib.rs -L /usr/lib -l static:-bundle=dl --crate-type=rlib
error[E0658]: kind="static-nobundle" is unstable
|
= note: see issue #37403 <https://github.com/rust-lang/rust/issues/37403> for more information
= help: add `#![feature(static_nobundle)]` to the crate attributes to enable
error: aborting due to previous error
For more information about this error, try `rustc --explain E0658`.
```
First found this in https://github.com/rust-lang/rust/pull/85600#discussion_r676612655
Remove unstable `--pretty` flag
It doesn't do anything `--unpretty` doesn't, and due to a bug, also
didn't show up in `--help`. I don't think there's any reason to keep it
around, I haven't seen anyone using it.
Closes https://github.com/rust-lang/rust/issues/36473.
Add an `abi` field to `TargetOptions`, defaulting to "". Support using
`cfg(target_abi = "...")` for conditional compilation on that field.
Gated by `feature(cfg_target_abi)`.
Add a test for `target_abi`, and a test for the feature gate.
Add `target_abi` to tidy as a platform-specific cfg.
This does not add an abi to any existing target.
Fix force-warns to allow dashes.
The `--force-warns` flag was not allowing lint names with dashes, only supporting underscores. This changes it to allow dashes to match the behavior of the A/W/D/F flags.
ignore test if rust-lld not found
create ld -> rust-lld symlink at build time instead of run time
for testing in ci
copy instead of symlinking
remove linux check
test for linker, suggestions from bjorn3
fix overly restrictive lld matcher
use -Zgcc-ld flag instead of -Clinker-flavor
refactor code adding lld to gcc path
revert ci changes
suggestions from petrochenkov
rename gcc_ld to gcc-ld in dirs
Implement DepTrackingHash for `Option` through blanket impls instead of macros
This avoids having to add a new macro call for both the `Option` and the type itself.
Noticed this while working on https://github.com/rust-lang/rust/pull/84233.
r? `@Aaron1011`
Support for force-warns
Implements https://github.com/rust-lang/rust/issues/85512.
This PR adds a new command line option `force-warns` which will force the provided lints to warn even if they are allowed by some other mechanism such as `#![allow(warnings)]`.
Some remaining issues:
* https://github.com/rust-lang/rust/issues/85512 mentions that `force-warns` should also be capable of taking lint groups instead of individual lints. This is not implemented.
* If a lint has a higher warning level than `warn`, this will cause that lint to warn instead. We probably want to allow the lint to error if it is set to a higher lint and is not allowed somewhere else.
* One test is currently ignored because it's not working - when a deny-by-default lint is allowed, it does not currently warn under `force-warns`. I'm not sure why, but I wanted to get this in before the weekend.
r? `@nikomatsakis`
Previously, we sorted the vec prior to hashing, making the hash
independent of the original (command-line argument) order. However, the
original vec was still always kept in the original order, so we were
relying on the rest of the compiler always working with it in an
'order-independent' way.
This assumption was not being upheld by the `native_libraries` query -
the order of the entires in its result depends on the order of entries
in `Options.libs`. This lead to an 'unstable fingerprint' ICE when the
`-l` arguments were re-ordered.
This PR removes the sorting logic entirely. Re-ordering command-line
arguments (without adding/removing/changing any arguments) seems like a
really niche use case, and correctly optimizing for it would require
additional work. By always hashing arguments in their original order, we
can entirely avoid a cause of 'unstable fingerprint' errors.
Add default search path to `Target::search()`
The function `Target::search()` accepts a target triple and returns a `Target` struct defining the requested target.
There is a `// FIXME 16351: add a sane default search path?` comment that indicates it is desirable to include some sort of default. This was raised in https://github.com/rust-lang/rust/issues/16351 which was closed without any resolution.
https://github.com/rust-lang/rust/pull/31117 was proposed, however that has platform-specific logic that is unsuitable for systems without `/etc/`.
This patch implements the suggestion raised in https://github.com/rust-lang/rust/issues/16351#issuecomment-180878193 where a `target.json` file may be placed in `$(rustc --print sysroot)/lib/rustlib/<target-triple>/target.json`. This allows shipping a toolchain distribution as a single file that gets extracted to the sysroot.
This commit implements both the native linking modifiers infrastructure
as well as an initial attempt at the individual modifiers from the RFC.
It also introduces a feature flag for the general syntax along with
individual feature flags for each modifier.
This is necessary for options that should invalidate the incremental
hash but *not* affect the crate hash (e.g. --remap-path-prefix).
This doesn't add `for_crate_hash` to the trait directly because it's not
relevant for *types*, only for *options*, which are fields on a larger
struct. Instead, it adds a new `SUBSTRUCT` directive for options, which
does take a `for_crate_hash` parameter.
- Use TRACKED_NO_CRATE_HASH for --remap-path-prefix
- Add test that `remap_path_prefix` is tracked
- Reduce duplication in the test suite to avoid future churn
Make a few functions private
These were made public in 3105bcfdc1. This
is so long ago I doubt anyone remembers why they're public. No one outside rustc_session uses
them, including in-tree tools.
It doesn't do anything `--unpretty` doesn't, and due to a bug, also
didn't show up in `--help`. I don't think there's any reason to keep it
around, I haven't seen anyone using it.
This enables us to set more generic labels shared between targets. For
example `target_family="wasm"` across all targets that are conceptually
"wasm".
See https://github.com/rust-lang/reference/pull/1006
The addition of `cfg(wasm)` was an oversight on my end that has a number
of downsides:
* It was introduced as an insta-stable addition, forgoing the usual
staging mechanism we use for potentially far-reaching changes;
* It is a breaking change for people who are using `--cfg wasm` either
directly or via cargo for other purposes;
* It is not entirely clear if a bare `wasm` cfg is a right option or
whether `wasm` family of targets are special enough to warrant
special-casing these targets specifically.
As for the last point, there appears to be a fair amount of support for
reducing the boilerplate in specifying architectures from the same
family, while ignoring their pointer width. The suggested way forward
would be to propose such a change as a separate RFC as it is potentially
a quite contentious addition.
Use FromStr trait for number option parsing
Replace `parse_uint` with generic `parse_number` based on `FromStr`.
Use it for parsing inlining threshold to avoid casting later.
Add an unstable --json=unused-externs flag to print unused externs
This adds an unstable flag to print a list of the extern names not used by cargo.
This PR will enable cargo to collect unused dependencies from all units and provide warnings.
The companion PR to cargo is: https://github.com/rust-lang/cargo/pull/8437
The goal is eventual stabilization of this flag in rustc as well as in cargo.
Discussion of this feature is mostly contained inside these threads: #57274#72342#72603
The feature builds upon the internal datastructures added by #72342
Externs are uniquely identified by name and the information is sufficient for cargo.
If the mode is enabled, rustc will print json messages like:
```
{"unused_extern_names":["byteorder","openssl","webpki"]}
```
For a crate that got passed byteorder, openssl and webpki dependencies but needed none of them.
### Q: Why not pass -Wunused-crate-dependencies?
A: See [ehuss's comment here](https://github.com/rust-lang/rust/issues/57274#issuecomment-624839355)
TLDR: it's cleaner. Rust's warning system wasn't built to be filtered or edited by cargo.
Even a basic implementation of the feature would have to change the "n warnings emitted" line that rustc prints at the end.
Cargo ideally wants to synthesize its own warnings anyways. For example, it would be hard for rustc to emit warnings like
"dependency foo is only used by dev targets", suggesting to make it a dev-dependency instead.
### Q: Make rustc emit used or unused externs?
A: Emitting used externs has the advantage that it simplifies cargo's collection job.
However, emitting unused externs creates less data to be communicated between rustc and cargo.
Often you want to paste a cargo command obtained from `cargo build -vv` for doing something
completely unrelated. The message is emitted always, even if no warning or error is emitted.
At that point, even this tiny difference in "noise" matters. That's why I went with emitting unused externs.
### Q: One json msg per extern or a collective json msg?
A: Same as above, the data format should be concise. Having 30 lines for the 30 crates a crate uses would be disturbing to readers.
Also it helps the cargo implementation to know that there aren't more unused deps coming.
### Q: Why use names of externs instead of e.g. paths?
A: Names are both sufficient as well as neccessary to uniquely identify a passed `--extern` arg.
Names are sufficient because you *must* pass a name when passing an `--extern` arg.
Passing a path is optional on the other hand so rustc might also figure out a crate's location from the file system.
You can also put multiple paths for the same extern name, via e.g. `--extern hello=/usr/lib/hello.rmeta --extern hello=/usr/local/lib/hello.rmeta`,
but rustc will only ever use one of those paths.
Also, paths don't identify a dependency uniquely as it is possible to have multiple different extern names point to the same path.
So paths are ill-suited for identification.
### Q: What about 2015 edition crates?
A: They are fully supported.
Even on the 2015 edition, an explicit `--extern` flag is is required to enable `extern crate foo;` to work (outside of sysroot crates, which this flag doesn't warn about anyways).
So the lint would still fire on 2015 edition crates if you haven't included a dependency specified in Cargo.toml using `extern crate foo;` or similar.
The lint won't fire if your sole use in the crate is through a `extern crate foo;` statement, but that's not its job.
For detecting unused `extern crate foo` statements, there is the `unused_extern_crates` lint
which can be enabled by `#![warn(unused_extern_crates)]` or similar.
cc ```@jsgf``` ```@ehuss``` ```@petrochenkov``` ```@estebank```
Found with https://github.com/est31/warnalyzer.
Dubious changes:
- Is anyone else using rustc_apfloat? I feel weird completely deleting
x87 support.
- Maybe some of the dead code in rustc_data_structures, in case someone
wants to use it in the future?
- Don't change rustc_serialize
I plan to scrap most of the json module in the near future (see
https://github.com/rust-lang/compiler-team/issues/418) and fixing the
tests needed more work than I expected.
TODO: check if any of the comments on the deleted code should be kept.
coverage bug fixes and optimization support
Adjusted LLVM codegen for code compiled with `-Zinstrument-coverage` to
address multiple, somewhat related issues.
Fixed a significant flaw in prior coverage solution: Every counter
generated a new counter variable, but there should have only been one
counter variable per function. This appears to have bloated .profraw
files significantly. (For a small program, it increased the size by
about 40%. I have not tested large programs, but there is anecdotal
evidence that profraw files were way too large. This is a good fix,
regardless, but hopefully it also addresses related issues.
Fixes: #82144
Invalid LLVM coverage data produced when compiled with -C opt-level=1
Existing tests now work up to at least `opt-level=3`. This required a
detailed analysis of the LLVM IR, comparisons with Clang C++ LLVM IR
when compiled with coverage, and a lot of trial and error with codegen
adjustments.
The biggest hurdle was figuring out how to continue to support coverage
results for unused functions and generics. Rust's coverage results have
three advantages over Clang's coverage results:
1. Rust's coverage map does not include any overlapping code regions,
making coverage counting unambiguous.
2. Rust generates coverage results (showing zero counts) for all unused
functions, including generics. (Clang does not generate coverage for
uninstantiated template functions.)
3. Rust's unused functions produce minimal stubbed functions in LLVM IR,
sufficient for including in the coverage results; while Clang must
generate the complete LLVM IR for each unused function, even though
it will never be called.
This PR removes the previous hack of attempting to inject coverage into
some other existing function instance, and generates dedicated instances
for each unused function. This change, and a few other adjustments
(similar to what is required for `-C link-dead-code`, but with lower
impact), makes it possible to support LLVM optimizations.
Fixes: #79651
Coverage report: "Unexecuted instantiation:..." for a generic function
from multiple crates
Fixed by removing the aforementioned hack. Some "Unexecuted
instantiation" notices are unavoidable, as explained in the
`used_crate.rs` test, but `-Zinstrument-coverage` has new options to
back off support for either unused generics, or all unused functions,
which avoids the notice, at the cost of less coverage of unused
functions.
Fixes: #82875
Invalid LLVM coverage data produced with crate brotli_decompressor
Fixed by disabling the LLVM function attribute that forces inlining, if
`-Z instrument-coverage` is enabled. This attribute is applied to
Rust functions with `#[inline(always)], and in some cases, the forced
inlining breaks coverage instrumentation and reports.
FYI: `@wesleywiser`
r? `@tmandry`
Adjusted LLVM codegen for code compiled with `-Zinstrument-coverage` to
address multiple, somewhat related issues.
Fixed a significant flaw in prior coverage solution: Every counter
generated a new counter variable, but there should have only been one
counter variable per function. This appears to have bloated .profraw
files significantly. (For a small program, it increased the size by
about 40%. I have not tested large programs, but there is anecdotal
evidence that profraw files were way too large. This is a good fix,
regardless, but hopefully it also addresses related issues.
Fixes: #82144
Invalid LLVM coverage data produced when compiled with -C opt-level=1
Existing tests now work up to at least `opt-level=3`. This required a
detailed analysis of the LLVM IR, comparisons with Clang C++ LLVM IR
when compiled with coverage, and a lot of trial and error with codegen
adjustments.
The biggest hurdle was figuring out how to continue to support coverage
results for unused functions and generics. Rust's coverage results have
three advantages over Clang's coverage results:
1. Rust's coverage map does not include any overlapping code regions,
making coverage counting unambiguous.
2. Rust generates coverage results (showing zero counts) for all unused
functions, including generics. (Clang does not generate coverage for
uninstantiated template functions.)
3. Rust's unused functions produce minimal stubbed functions in LLVM IR,
sufficient for including in the coverage results; while Clang must
generate the complete LLVM IR for each unused function, even though
it will never be called.
This PR removes the previous hack of attempting to inject coverage into
some other existing function instance, and generates dedicated instances
for each unused function. This change, and a few other adjustments
(similar to what is required for `-C link-dead-code`, but with lower
impact), makes it possible to support LLVM optimizations.
Fixes: #79651
Coverage report: "Unexecuted instantiation:..." for a generic function
from multiple crates
Fixed by removing the aforementioned hack. Some "Unexecuted
instantiation" notices are unavoidable, as explained in the
`used_crate.rs` test, but `-Zinstrument-coverage` has new options to
back off support for either unused generics, or all unused functions,
which avoids the notice, at the cost of less coverage of unused
functions.
Fixes: #82875
Invalid LLVM coverage data produced with crate brotli_decompressor
Fixed by disabling the LLVM function attribute that forces inlining, if
`-Z instrument-coverage` is enabled. This attribute is applied to
Rust functions with `#[inline(always)], and in some cases, the forced
inlining breaks coverage instrumentation and reports.
When codegenning code coverage use the instance that coverage data was
originally generated for, to ensure basic level of compatibility with
MIR inlining.