coverage: Optionally instrument the RHS of lazy logical operators
(This is an updated version of #124644 and #124402. Fixes #124120.)
When `||` or `&&` is used outside of a branching context (such as the condition of an `if`), the rightmost value does not directly influence any branching decision, so branch coverage instrumentation does not treat it as its own true-or-false branch.
That is a correct and useful interpretation of “branch coverage”, but might be undesirable in some contexts, as described at #124120. This PR therefore adds a new coverage level `-Zcoverage-options=condition` that behaves like branch coverage, but also adds additional branch instrumentation to the right-hand-side of lazy boolean operators.
---
As discussed at https://github.com/rust-lang/rust/issues/124120#issuecomment-2092394586, this is mainly intended as an intermediate step towards fully-featured MC/DC instrumentation. It's likely that we'll eventually want to remove this coverage level (rather than stabilize it), either because it has been incorporated into MC/DC instrumentation, or because it's getting in the way of future MC/DC work. The main appeal of landing it now is so that work on tracking conditions can proceed concurrently with other MC/DC-related work.
````@rustbot```` label +A-code-coverage
Make `std::env::{set_var, remove_var}` unsafe in edition 2024
Allow calling these functions without `unsafe` blocks in editions up until 2021, but don't trigger the `unused_unsafe` lint for `unsafe` blocks containing these functions.
Fixes#27970.
Fixes#90308.
CC #124866.
coverage: Rename MC/DC `conditions_num` to `num_conditions`
Updated version of #124571, without the other changes that were split out into #125108 and #125700.
This value represents a quantity of conditions, not an ID, so the new spelling is more appropriate.
Some of the code touched by this PR could perhaps use some other changes, but I would prefer to keep this PR as a simple renaming and avoid scope creep.
`@rustbot` label +A-code-coverage
Make `body_owned_by` return the `Body` instead of just the `BodyId`
fixes#125677
Almost all `body_owned_by` callers immediately called `body`, too, so just return `Body` directly.
This makes the inline-const query feeding more robust, as all calls to `body_owned_by` will now yield a body for inline consts, too.
I have not yet figured out a good way to make `tcx.hir().body()` return an inline-const body, but that can be done as a follow-up
When a lazy logical operator (`&&` or `||`) occurs outside of an `if`
condition, it normally doesn't have any associated control-flow branch, so we
don't have an existing way to track whether it was true or false.
This patch adds special code to handle this case, by inserting extra MIR blocks
in a diamond shape after evaluating the RHS. This gives us a place to insert
the appropriate marker statements, which can then be given their own counters.
Allow calling these functions without `unsafe` blocks in editions up
until 2021, but don't trigger the `unused_unsafe` lint for `unsafe`
blocks containing these functions.
Fixes#27970.
Fixes#90308.
CC #124866.
coverage: Avoid overflow when the MC/DC condition limit is exceeded
Fix for the test failure seen in https://github.com/rust-lang/rust/pull/124571#issuecomment-2099620869.
If we perform this subtraction first, it can sometimes overflow to -1 before the addition can bring its value back to 0.
That behaviour seems to be benign, but it nevertheless causes test failures in compiler configurations that check for overflow.
``@rustbot`` label +A-code-coverage
If we perform this subtraction and then add 1, the subtraction can sometimes
overflow to -1 before the addition can bring its value back to 0. That
behaviour seems to be benign, but it nevertheless causes test failures in
compiler configurations that check for overflow.
We can avoid the overflow by instead subtracting (N - 1), which is
algebraically equivalent, and more closely matches what the code is actually
trying to do.
Turn remaining non-structural-const-in-pattern lints into hard errors
This completes the implementation of https://github.com/rust-lang/rust/issues/120362 by turning our remaining future-compat lints into hard errors: indirect_structural_match and pointer_structural_match.
They have been future-compat lints for a while (indirect_structural_match for many years, pointer_structural_match since Rust 1.75 (released Dec 28, 2023)), and have shown up in dependency breakage reports since Rust 1.78 (just released on May 2, 2024). I don't expect a lot of code will still depend on them, but we will of course do a crater run.
A lot of cleanup is now possible in const_to_pat, but that is deferred to a later PR.
Fixes https://github.com/rust-lang/rust/issues/70861
Remove more `#[macro_use] extern crate tracing`
Because explicit importing of macros via use items is nicer (more standard and readable) than implicit importing via `#[macro_use]`. Continuing the work from #124511 and #124914.
r? `@jackh726`
Cleanup: Fix up some diagnostics
Several diagnostics contained their error code inside their primary message which is no bueno.
This PR moves them out of the message and turns them into structured error codes.
Also fixes another occurrence of `->` after a selector in a Fluent message which is not correct. I've fixed two other instances of this issue in #104345 (2022) but didn't update all instances as I've noted here: https://github.com/rust-lang/rust/pull/104345#issuecomment-1312705977 (“the future is now!”).
Expand `for_loops_over_fallibles` lint to lint on fallibles behind references.
Extends the scope of the (warn-by-default) lint `for_loops_over_fallibles` from just `for _ in x` where `x: Option<_>/Result<_, _>` to also cover `x: &(mut) Option<_>/Result<_>`
```rs
fn main() {
// Current lints
for _ in Some(42) {}
for _ in Ok::<_, i32>(42) {}
// New lints
for _ in &Some(42) {}
for _ in &mut Some(42) {}
for _ in &Ok::<_, i32>(42) {}
for _ in &mut Ok::<_, i32>(42) {}
// Should not lint
for _ in Some(42).into_iter() {}
for _ in Some(42).iter() {}
for _ in Some(42).iter_mut() {}
for _ in Ok::<_, i32>(42).into_iter() {}
for _ in Ok::<_, i32>(42).iter() {}
for _ in Ok::<_, i32>(42).iter_mut() {}
}
```
<details><summary><code>cargo build</code> diff</summary>
```diff
diff --git a/old.out b/new.out
index 84215aa..ca195a7 100644
--- a/old.out
+++ b/new.out
`@@` -1,33 +1,93 `@@`
warning: for loop over an `Option`. This is more readably written as an `if let` statement
--> src/main.rs:3:14
|
3 | for _ in Some(42) {}
| ^^^^^^^^
|
= note: `#[warn(for_loops_over_fallibles)]` on by default
help: to check pattern in a loop use `while let`
|
3 | while let Some(_) = Some(42) {}
| ~~~~~~~~~~~~~~~ ~~~
help: consider using `if let` to clear intent
|
3 | if let Some(_) = Some(42) {}
| ~~~~~~~~~~~~ ~~~
warning: for loop over a `Result`. This is more readably written as an `if let` statement
--> src/main.rs:4:14
|
4 | for _ in Ok::<_, i32>(42) {}
| ^^^^^^^^^^^^^^^^
|
help: to check pattern in a loop use `while let`
|
4 | while let Ok(_) = Ok::<_, i32>(42) {}
| ~~~~~~~~~~~~~ ~~~
help: consider using `if let` to clear intent
|
4 | if let Ok(_) = Ok::<_, i32>(42) {}
| ~~~~~~~~~~ ~~~
-warning: `for-loops-over-fallibles` (bin "for-loops-over-fallibles") generated 2 warnings
- Finished `dev` profile [unoptimized + debuginfo] target(s) in 0.04s
+warning: for loop over a `&Option`. This is more readably written as an `if let` statement
+ --> src/main.rs:7:14
+ |
+7 | for _ in &Some(42) {}
+ | ^^^^^^^^^
+ |
+help: to check pattern in a loop use `while let`
+ |
+7 | while let Some(_) = &Some(42) {}
+ | ~~~~~~~~~~~~~~~ ~~~
+help: consider using `if let` to clear intent
+ |
+7 | if let Some(_) = &Some(42) {}
+ | ~~~~~~~~~~~~ ~~~
+
+warning: for loop over a `&mut Option`. This is more readably written as an `if let` statement
+ --> src/main.rs:8:14
+ |
+8 | for _ in &mut Some(42) {}
+ | ^^^^^^^^^^^^^
+ |
+help: to check pattern in a loop use `while let`
+ |
+8 | while let Some(_) = &mut Some(42) {}
+ | ~~~~~~~~~~~~~~~ ~~~
+help: consider using `if let` to clear intent
+ |
+8 | if let Some(_) = &mut Some(42) {}
+ | ~~~~~~~~~~~~ ~~~
+
+warning: for loop over a `&Result`. This is more readably written as an `if let` statement
+ --> src/main.rs:9:14
+ |
+9 | for _ in &Ok::<_, i32>(42) {}
+ | ^^^^^^^^^^^^^^^^^
+ |
+help: to check pattern in a loop use `while let`
+ |
+9 | while let Ok(_) = &Ok::<_, i32>(42) {}
+ | ~~~~~~~~~~~~~ ~~~
+help: consider using `if let` to clear intent
+ |
+9 | if let Ok(_) = &Ok::<_, i32>(42) {}
+ | ~~~~~~~~~~ ~~~
+
+warning: for loop over a `&mut Result`. This is more readably written as an `if let` statement
+ --> src/main.rs:10:14
+ |
+10 | for _ in &mut Ok::<_, i32>(42) {}
+ | ^^^^^^^^^^^^^^^^^^^^^
+ |
+help: to check pattern in a loop use `while let`
+ |
+10 | while let Ok(_) = &mut Ok::<_, i32>(42) {}
+ | ~~~~~~~~~~~~~ ~~~
+help: consider using `if let` to clear intent
+ |
+10 | if let Ok(_) = &mut Ok::<_, i32>(42) {}
+ | ~~~~~~~~~~ ~~~
+
+warning: `for-loops-over-fallibles` (bin "for-loops-over-fallibles") generated 6 warnings
+ Finished `dev` profile [unoptimized + debuginfo] target(s) in 0.02s
```
</details>
-----
Question:
* ~~Currently, the article `an` is used for `&Option`, and `&mut Option` in the lint diagnostic, since that's what `Option` uses. Is this okay or should it be changed? (likewise, `a` is used for `&Result` and `&mut Result`)~~ The article `a` is used for `&Option`, `&mut Option`, `&Result`, `&mut Result` and (as before) `Result`. Only `Option` uses `an` (as before).
`@rustbot` label +A-lint
Remove `#[macro_use] extern crate rustc middle` from numerous crates
Because explicit importing of macros via `use` items is nicer (more standard and readable) than implicit importing via `#[macro_use]`. This PR mops up some cases I didn't get to in #124511.
r? `@saethlin`
Unfortunately, we can't always offer a machine-applicable suggestion when there are subpatterns from macro expansion.
Co-Authored-By: Guillaume Boisseau <Nadrieril@users.noreply.github.com>
`InferCtxt::next_{ty,const}_var*` all take an origin, but the
`param_def_id` is almost always `None`. This commit changes them to just
take a `Span` and build the origin within the method, and adds new
methods for the rare cases where `param_def_id` might not be `None`.
This avoids a lot of tedious origin building.
Specifically:
- next_ty_var{,_id_in_universe,_in_universe}: now take `Span` instead of
`TypeVariableOrigin`
- next_ty_var_with_origin: added
- next_const_var{,_in_universe}: takes Span instead of ConstVariableOrigin
- next_const_var_with_origin: added
- next_region_var, next_region_var_in_universe: these are unchanged,
still take RegionVariableOrigin
The API inconsistency (ty/const vs region) seems worth it for the
large conciseness improvements.
coverage: Branch coverage support for let-else and if-let
This PR adds branch coverage instrumentation for let-else and if-let, including let-chains.
This lifts two of the limitations listed at #124118.
Some hir cleanups
It seemed odd to not put `AnonConst` in the arena, compared with the other types that we did put into an arena. This way we can also give it a `Span` without growing a lot of other HIR data structures because of the extra field.
r? compiler
Use `tcx.types.unit` instead of `Ty::new_unit(tcx)`
I don't think there is any need for the function, given that we can just access the `.types`, similarly to all other primitives?
coverage: Avoid hard-coded values when visiting logical ops
This is a tiny little thing that I noticed during the final review of #123409, and I didn't want to hold up the whole PR just for this.
Instead of separately hard-coding the operation being visited, we can get it from the match arm pattern by using an as-pattern.
`@rustbot` label +A-code-coverage
MCDC coverage: support nested decision coverage
#123409 provided the initial MCDC coverage implementation.
As referenced in #124144, it does not currently support "nested" decisions, like the following example :
```rust
fn nested_if_in_condition(a: bool, b: bool, c: bool) {
if a && if b || c { true } else { false } {
say("yes");
} else {
say("no");
}
}
```
Note that there is an if-expression (`if b || c ...`) embedded inside a boolean expression in the decision of an outer if-expression.
This PR proposes a workaround for this cases, by introducing a Decision context stack, and by handing several `temporary condition bitmaps` instead of just one.
When instrumenting boolean expressions, if the current node is a leaf condition (i.e. not a `||`/`&&` logical operator nor a `!` not operator), we insert a new decision context, such that if there are more boolean expressions inside the condition, they are handled as separate expressions.
On the codegen LLVM side, we allocate as many `temp_cond_bitmap`s as necessary to handle the maximum encountered decision depth.