Dejargonize `subst`
In favor of #110793, replace almost every occurence of `subst` and `substitution` from rustc codes, but they still remains in subtrees under `src/tools/` like clippy and test codes (I'd like to replace them after this)
Fix async closures in CTFE
First commit renames `is_coroutine_or_closure` into `is_closure_like`, because `is_coroutine_or_closure_or_coroutine_closure` seems confusing and long.
Second commit fixes some forgotten cases where we want to handle `TyKind::CoroutineClosure` the same as closures and coroutines.
The test exercises the change to `ValidityVisitor::aggregate_field_path_elem` which is the source of #120946, but not the change to `UsedParamsNeedSubstVisitor`, though I feel like it's not that big of a deal. Let me know if you'd like for me to look into constructing a test for the latter, though I have no idea what it'd look like (we can't assert against `TooGeneric` anywhere?).
Fixes#120946
r? oli-obk cc ``@RalfJung``
Check that the ABI of the instance we are inlining is correct
When computing the `CallSite` in the mir inliner, double check that the instance of the function that we are inlining is compatible with the signature from the trait definition that we acquire from the MIR.
Fixes#120940
r? ``@oli-obk`` or ``@cjgillot``
Remove a bunch of dead parameters in functions
Found this kind of issue when working on https://github.com/rust-lang/rust/pull/119650
I wrote a trivial toy lint and manual review to find these.
Assert that params with the same *index* have the same *name*
Found this bug when trying to build libcore with the new solver, since it will canonicalize two params with the same index into *different* placeholders if those params differ by name.
Fold pointer operations in GVN
This PR proposes 2 combinations of cast operations in MIR GVN:
- a chain of `PtrToPtr` or `MutToConstPointer` casts can be folded together into a single `PtrToPtr` cast;
- we attempt to evaluate more ptr ops when there is no provenance.
In particular, this allows to read from static slices.
This is not yet sufficient to see through slice operations that use `PtrComponents` (because that's a union), but still a step forward.
r? `@ghost`
These crates all needed specialization for `newtype_index!`, which will no
longer be necessary when the current nightly eventually becomes the next
bootstrap compiler.
Fix more `ty::Error` ICEs in MIR passes
Fixes#120791 - Add a check for `ty::Error` in the `ByMove` coroutine pass
Fixes#120816 - Add a check for `ty::Error` in the MIR validator
Also a drive-by fix for a FIXME I had asked oli to add
r? oli-obk
Invert diagnostic lints.
That is, change `diagnostic_outside_of_impl` and `untranslatable_diagnostic` from `allow` to `deny`, because more than half of the compiler has been converted to use translated diagnostics.
This commit removes more `deny` attributes than it adds `allow` attributes, which proves that this change is warranted.
r? ````@davidtwco````
Toggle assert_unsafe_precondition in codegen instead of expansion
The goal of this PR is to make some of the unsafe precondition checks in the standard library available in debug builds. Some UI tests are included to verify that it does that.
The diff is large, but most of it is blessing mir-opt tests and I've also split up this PR so it can be reviewed commit-by-commit.
This PR:
1. Adds a new intrinsic, `debug_assertions` which is lowered to a new MIR NullOp, and only to a constant after monomorphization
2. Rewrites `assume_unsafe_precondition` to check the new intrinsic, and be monomorphic.
3. Skips codegen of the `assume` intrinsic in unoptimized builds, because that was silly before but with these checks it's *very* silly
4. The checks with the most overhead are `ptr::read`/`ptr::write` and `NonNull::new_unchecked`. I've simply added `#[cfg(debug_assertions)]` to the checks for `ptr::read`/`ptr::write` because I was unable to come up with any (good) ideas for decreasing their impact. But for `NonNull::new_unchecked` I found that the majority of callers can use a different function, often a safe one.
Yes, this PR slows down the compile time of some programs. But in our benchmark suite it's never more than 1% icount, and the average icount change in debug-full programs is 0.22%. I think that is acceptable for such an improvement in developer experience.
https://github.com/rust-lang/rust/issues/120539#issuecomment-1922687101
Fix mir pass ICE in the presence of other errors
fixes#120779
it is impossible to add a ui test for this, because it only reproduces in build-fail, but a test that also has errors in check-fail mode can't be made build-fail 🙃
I would have to add a run-make test or sth, which is overkill for such a tiny thing imo.
Remove unused args from functions
`#[instrument]` suppresses the unused arguments from a function, *and* suppresses unused methods too! This PR removes things which are only used via `#[instrument]` calls, and fixes some other errors (privacy?) that I will comment inline.
It's possible that some of these arguments were being passed in for the purposes of being instrumented, but I am unconvinced by most of them.
Rollup of 9 pull requests
Successful merges:
- #119592 (resolve: Unload speculatively resolved crates before freezing cstore)
- #120103 (Make it so that async-fn-in-trait is compatible with a concrete future in implementation)
- #120206 (hir: Make sure all `HirId`s have corresponding HIR `Node`s)
- #120214 (match lowering: consistently lower bindings deepest-first)
- #120688 (GVN: also turn moves into copies with projections)
- #120702 (docs: also check the inline stmt during redundant link check)
- #120727 (exhaustiveness: Prefer "`0..MAX` not covered" to "`_` not covered")
- #120734 (Add `SubdiagnosticMessageOp` as a trait alias.)
- #120739 (improve pretty printing for associated items in trait objects)
r? `@ghost`
`@rustbot` modify labels: rollup
MirPass: make name more const
Continues #120161, this time applied to `MirPass` instead of `MirLint`, locally shaves few (very few) instructions off.
r? ``@cjgillot``
coverage: Split out counter increment sites from BCB node/edge counters
This makes it possible for two nodes/edges in the coverage graph to share the same counter, without causing the instrumentor to inject unwanted duplicate counter-increment statements.
---
````@rustbot```` label +A-code-coverage
That is, change `diagnostic_outside_of_impl` and
`untranslatable_diagnostic` from `allow` to `deny`, because more than
half of the compiler has be converted to use translated diagnostics.
This commit removes more `deny` attributes than it adds `allow`
attributes, which proves that this change is warranted.
This sidesteps the normal span refinement code in cases where we know that we
are only dealing with the special signature span that represents having called
an async function.
This makes it possible for two nodes/edges in the coverage graph to share the
same counter, without causing the instrumentor to inject unwanted duplicate
counter-increment statements.
The query accept arbitrary DefIds, not just owner DefIds.
The return can be an `Option` because if there are no nodes, then it doesn't matter whether it's due to NonOwner or Phantom.
Also rename the query to `opt_hir_owner_nodes`.
Because it's almost always static.
This makes `impl IntoDiagnosticArg for DiagnosticArgValue` trivial,
which is nice.
There are a few diagnostics constructed in
`compiler/rustc_mir_build/src/check_unsafety.rs` and
`compiler/rustc_mir_transform/src/errors.rs` that now need symbols
converted to `String` with `to_string` instead of `&str` with `as_str`,
but that' no big deal, and worth it for the simplifications elsewhere.
Error codes are integers, but `String` is used everywhere to represent
them. Gross!
This commit introduces `ErrCode`, an integral newtype for error codes,
replacing `String`. It also introduces a constant for every error code,
e.g. `E0123`, and removes the `error_code!` macro. The constants are
imported wherever used with `use rustc_errors::codes::*`.
With the old code, we have three different ways to specify an error code
at a use point:
```
error_code!(E0123) // macro call
struct_span_code_err!(dcx, span, E0123, "msg"); // bare ident arg to macro call
\#[diag(name, code = "E0123")] // string
struct Diag;
```
With the new code, they all use the `E0123` constant.
```
E0123 // constant
struct_span_code_err!(dcx, span, E0123, "msg"); // constant
\#[diag(name, code = E0123)] // constant
struct Diag;
```
The commit also changes the structure of the error code definitions:
- `rustc_error_codes` now just defines a higher-order macro listing the
used error codes and nothing else.
- Because that's now the only thing in the `rustc_error_codes` crate, I
moved it into the `lib.rs` file and removed the `error_codes.rs` file.
- `rustc_errors` uses that macro to define everything, e.g. the error
code constants and the `DIAGNOSTIC_TABLES`. This is in its new
`codes.rs` file.
Remove unused/unnecessary features
~~The bulk of the actual code changes here is replacing try blocks with equivalent closures. I'm not entirely sure that's a good idea since it may have perf impact, happy to revert if that's the case/the change is unwanted.~~
I also removed a lot of `recursion_limit = "256"` since everything seems to build fine without that and most don't have any comment justifying it.
Remove coroutine info when building coroutine drop body
Coroutine drop shims are not themselves coroutines, so erase the "`coroutine`" field from the body so that helper fns like `yield_ty` and `coroutine_kind` properly return `None` for the drop shim.
coverage: Dismantle `Instrumentor` and flatten span refinement
This is a combination of two refactorings that are unrelated, but would otherwise have a merge conflict.
No functional changes, other than a small tweak to debug logging as part of rearranging some functions.
Ignoring whitespace is highly recommended, since most of the modified lines have just been reindented.
---
The first change is to dismantle `Instrumentor` into ordinary functions.
This is one of those cases where encapsulating several values into a struct ultimately hurts more than it helps. With everything stored as local variables in one main function, and passed explicitly into helper functions, it's easier to see what is used where, and make changes as necessary.
---
The second change is to flatten the functions for extracting/refining coverage spans.
Consolidating this code into flatter functions reduces the amount of pointer-chasing required to read and modify it.
Remove all ConstPropNonsense
We track all locals and projections on them ourselves within the const propagator and only use the InterpCx to actually do some low level operations or read from constants (via `OpTy` we get for said constants).
This helps moving the const prop lint out from the normal pipeline and running it just based on borrowck information. This in turn allows us to make progress on https://github.com/rust-lang/rust/pull/108730#issuecomment-1875557745
there are various follow up cleanups that can be done after this PR (e.g. not matching on Rvalue twice and doing binop checks twice), but lets try landing this one first.
r? `@RalfJung`
coverage: Don't instrument `#[automatically_derived]` functions
This PR makes the coverage instrumentor detect and skip functions that have [`#[automatically_derived]`](https://doc.rust-lang.org/reference/attributes/derive.html#the-automatically_derived-attribute) on their enclosing impl block.
Most notably, this means that methods generated by built-in derives (e.g. `Clone`, `Debug`, `PartialEq`) are now ignored by coverage instrumentation, and won't appear as executed or not-executed in coverage reports.
This is a noticeable change in user-visible behaviour, but overall I think it's a net improvement. For example, we've had a few user requests for this sort of change (e.g. #105055, https://github.com/rust-lang/rust/issues/84605#issuecomment-1902069040), and I believe it's the behaviour that most users will expect/prefer by default.
It's possible to imagine situations where users would want to instrument these derived implementations, but I think it's OK to treat that as an opportunity to consider adding more fine-grained option flags to control the details of coverage instrumentation, while leaving this new behaviour as the default.
(Also note that while `-Cinstrument-coverage` is a stable feature, the exact details of coverage instrumentation are allowed to change. So we *can* make this change; the main question is whether we *should*.)
Fixes#105055.
coverage: Never emit improperly-ordered coverage regions
If we emit a coverage region that is improperly ordered (end < start), `llvm-cov` will fail with `coveragemap_error::malformed`, which is inconvenient for users and also very hard to debug.
Ideally we would fix the root causes of these situations, but they tend to occur in very obscure edge-case scenarios (often involving nested macros), and we don't always have a good MCVE to work from. So it makes sense to also have a catch-all check that will prevent improperly-ordered regions from ever being emitted.
---
This is mainly aimed at resolving #119453. We don't have a specific way to reproduce it, which is why I haven't been able to add a test case in this PR. But based on the information provided in that issue, this change seems likely to avoid the error in `llvm-cov`.
`````@rustbot````` label +A-code-coverage
Rollup of 9 pull requests
Successful merges:
- #112806 (Small code improvements in `collect_intra_doc_links.rs`)
- #119766 (Split tait and impl trait in assoc items logic)
- #120139 (Do not normalize closure signature when building `FnOnce` shim)
- #120160 (Manually implement derived `NonZero` traits.)
- #120171 (Fix assume and assert in jump threading)
- #120183 (Add `#[coverage(off)]` to closures introduced by `#[test]` and `#[bench]`)
- #120195 (add several resolution test cases)
- #120259 (Split Diagnostics for Uncommon Codepoints: Add List to Display Characters Involved)
- #120261 (Provide structured suggestion to use trait objects in some cases of `if` arm type divergence)
r? `@ghost`
`@rustbot` modify labels: rollup
Only use dense bitsets in dataflow analyses
When a dataflow state has the size close to the number of locals, we should prefer a dense bitset, like we already store locals in a dense vector.
Other occurrences of `ChunkedBitSet` need to be justified by the size of the dataflow state.