I have a suspicion that quite a few delayed bug paths are impossible to
reach, so I did an experiment.
I converted every `delayed_bug` to a `bug`, ran the full test suite,
then converted back every `bug` that was hit. A surprising number were
never hit.
The next commit will convert some more back, based on human judgment.
Overhaul `Diagnostic` and `DiagnosticBuilder`
Implements the first part of https://github.com/rust-lang/compiler-team/issues/722, which moves functionality and use away from `Diagnostic`, onto `DiagnosticBuilder`.
Likely follow-ups:
- Move things around, because this PR was written to minimize diff size, so some things end up in sub-optimal places. E.g. `DiagnosticBuilder` has impls in both `diagnostic.rs` and `diagnostic_builder.rs`.
- Rename `Diagnostic` as `DiagInner` and `DiagnosticBuilder` as `Diag`.
r? `@davidtwco`
When shortening the type it is necessary to take into account the
`--verbose` flag, if it is activated, we must always show the entire
type and not write it in a file.
Fixes: https://github.com/rust-lang/rust/issues/119130
Allow AST and HIR visitors to return `ControlFlow`
Alternative to #108598.
Since rust-lang/libs-team#187 was rejected, this implements our own version of the `Try` trait (`VisitorResult`) and the `try` macro (`try_visit`). Since this change still allows visitors to return `()`, no changes have been made to the existing ones. They can be done in a separate PR.
There are lots of functions that modify a diagnostic. This can be via a
`&mut Diagnostic` or a `&mut DiagnosticBuilder`, because the latter type
wraps the former and impls `DerefMut`.
This commit converts all the `&mut Diagnostic` occurrences to `&mut
DiagnosticBuilder`. This is a step towards greatly simplifying
`Diagnostic`. Some of the relevant function are made generic, because
they deal with both errors and warnings. No function bodies are changed,
because all the modifier methods are available on both `Diagnostic` and
`DiagnosticBuilder`.
fixes#117448
For example unnecessary imports in std::prelude that can be eliminated:
```rust
use std::option::Option::Some;//~ WARNING the item `Some` is imported redundantly
use std::option::Option::None; //~ WARNING the item `None` is imported redundantly
```
Add and use a simple extension trait derive macro in the compiler
Adds `#[extension]` to `rustc_macros` for implementing an extension trait. This expands an impl (with an optional visibility) into two parallel trait + impl definitions.
before:
```rust
pub trait Extension {
fn a();
}
impl Extension for () {
fn a() {}
}
```
to:
```rust
#[extension]
pub impl Extension for () {
fn a() {}
}
```
Opted to just implement it by hand because I couldn't figure if there was a "canonical" choice of extension trait macro in the ecosystem. It's really lightweight anyways, and can always be changed.
I'm interested in adding this because I'd like to later split up the large `TypeErrCtxtExt` traits into several different files. This should make it one step easier.
allow mutable references in const values when they point to no memory
Fixes https://github.com/rust-lang/rust/issues/120450
The second commit is just some drive-by test suite cleanup.
r? `@oli-obk`
Implement intrinsics with fallback bodies
fixes#93145 (though we can port many more intrinsics)
cc #63585
The way this works is that the backend logic for generating custom code for intrinsics has been made fallible. The only failure path is "this intrinsic is unknown". The `Instance` (that was `InstanceDef::Intrinsic`) then gets converted to `InstanceDef::Item`, which represents the fallback body. A regular function call to that body is then codegenned. This is currently implemented for
* codegen_ssa (so llvm and gcc)
* codegen_cranelift
other backends will need to adjust, but they can just keep doing what they were doing if they prefer (though adding new intrinsics to the compiler will then require them to implement them, instead of getting the fallback body).
cc `@scottmcm` `@WaffleLapkin`
### todo
* [ ] miri support
* [x] default intrinsic name to name of function instead of requiring it to be specified in attribute
* [x] make sure that the bodies are always available (must be collected for metadata)
Only point out non-diverging arms for match suggestions
Fixes#121144
There is no reason to point at diverging arms, which will always coerce to whatever is the match block's evaluated type.
This also removes the suggestion from #106601, since as I pointed out in https://github.com/rust-lang/rust/issues/72634#issuecomment-1946210898 the added suggestion is not firing in the right cases, but instead only when one of the match arms already *actually* evaluates to `()`.
r? estebank
Store static initializers in metadata instead of the MIR of statics.
This means that adding generic statics would be even more difficult, as we can't evaluate statics from other crates anymore, but the subtle issue I have encountered make me think that having this be an explicit problem is better.
The issue is that
```rust
static mut FOO: &mut u32 = &mut 42;
static mut BAR = unsafe { FOO };
```
gets different allocations, instead of referring to the same one. This is also true for non-static mut, but promotion makes `static FOO: &u32 = &42;` annoying to demo.
Fixes https://github.com/rust-lang/rust/issues/61345
## Why is this being done?
In order to ensure all crates see the same nested allocations (which is the last issue that needs fixing before we can stabilize [`const_mut_refs`](https://github.com/rust-lang/rust/issues/57349)), I am working on creating anonymous (from the Rust side, to LLVM it's like a regular static item) static items for the nested allocations in a static. If we evaluate the static item in a downstream crate again, we will end up duplicating its nested allocations (and in some cases, like the `match` case, even duplicate the main allocation).
Enforce coroutine-closure layouts are identical
Enforce that for an async closure, the by-ref and by-move coroutine layouts are identical. This is just a sanity check to make sure that optimizations aren't doing anything fishy.
r? oli-obk
Make sure `tcx.create_def` also depends on the forever red node, instead of just `tcx.at(span).create_def`
oversight from https://github.com/rust-lang/rust/pull/119136
Not actually an issue, because all uses of `tcx.create_def` were in the resolver, which is `eval_always`, but still good to harden against future uses of `create_def`
cc `@petrochenkov` `@WaffleLapkin`
Make sure `tcx.create_def` also depends on the forever red node, instead of just `tcx.at(span).create_def`
oversight from https://github.com/rust-lang/rust/pull/119136
Not actually an issue, because all uses of `tcx.create_def` were in the resolver, which is `eval_always`, but still good to harden against future uses of `create_def`
cc `@petrochenkov` `@WaffleLapkin`
Extend documentation for `Ty::to_opt_closure_kind` method
This API was... surprising to use. With a little extra documentation, the weirdness can be reduced quite a lot. :)
r? `@compiler-errors`
Uplift `TypeVisitableExt` into `rustc_type_ir`
This uplifts `TypeVisitableExt` into `rustc_type_ir` so it can be used in an interner-agnostic way. It also moves some `TypeSuperVisitable` bounds onto `Interner` since we don't expect to support libraries that have types which aren't foldable by default.
This restores a couple of asserts in the canonicalizer code we uplifted, and also makes it so that we can use type-flags-based helpers in the solver code, which I'm interested in uplifting.
r? lcnr
Fully stop using the HIR in trait impl checks
At least I hope I found all happy path usages. I'll need to check if I can figure out a way to make queries declare that they don't access the HIR except in error paths
Properly handle `async` block and `async fn` in `if` exprs without `else`
When encountering a tail expression in the then arm of an `if` expression without an `else` arm, account for `async fn` and `async` blocks to suggest `return`ing the value and pointing at the return type of the `async fn`.
We now also account for AFIT when looking for the return type to point at.
Fix#115405.
Merge `impl_polarity` and `impl_trait_ref` queries
Hopefully this is perf neutral. I want to finish https://github.com/rust-lang/rust/pull/120835 and stop using the HIR in `coherent_trait`, which should then give us a perf improvement.
It's only has a single remaining purpose: to ensure that a diagnostic is
printed when `trimmed_def_paths` is used. It's an annoying mechanism:
weak, with odd semantics, badly named, and gets in the way of other
changes.
This commit replaces it with a simpler `must_produce_diag` mechanism,
getting rid of a diagnostic `Level` along the way.
Dejargonize `subst`
In favor of #110793, replace almost every occurence of `subst` and `substitution` from rustc codes, but they still remains in subtrees under `src/tools/` like clippy and test codes (I'd like to replace them after this)
Fix async closures in CTFE
First commit renames `is_coroutine_or_closure` into `is_closure_like`, because `is_coroutine_or_closure_or_coroutine_closure` seems confusing and long.
Second commit fixes some forgotten cases where we want to handle `TyKind::CoroutineClosure` the same as closures and coroutines.
The test exercises the change to `ValidityVisitor::aggregate_field_path_elem` which is the source of #120946, but not the change to `UsedParamsNeedSubstVisitor`, though I feel like it's not that big of a deal. Let me know if you'd like for me to look into constructing a test for the latter, though I have no idea what it'd look like (we can't assert against `TooGeneric` anywhere?).
Fixes#120946
r? oli-obk cc ``@RalfJung``
When encountering a tail expression in the then arm of an `if` expression
without an `else` arm, account for `async fn` and `async` blocks to
suggest `return`ing the value and pointing at the return type of the
`async fn`.
We now also account for AFIT when looking for the return type to point at.
Fix#115405.
Rollup of 11 pull requests
Successful merges:
- #120765 (Reorder diagnostics API)
- #120833 (More internal emit diagnostics cleanups)
- #120899 (Gracefully handle non-WF alias in `assemble_alias_bound_candidates_recur`)
- #120917 (Remove a bunch of dead parameters in functions)
- #120928 (Add test for recently fixed issue)
- #120933 (check_consts: fix duplicate errors, make importance consistent)
- #120936 (improve `btree_cursors` functions documentation)
- #120944 (Check that the ABI of the instance we are inlining is correct)
- #120956 (Clean inlined type alias with correct param-env)
- #120962 (Add myself to library/std review)
- #120972 (fix ICE for deref coercions with type errors)
r? `@ghost`
`@rustbot` modify labels: rollup
Assert that params with the same *index* have the same *name*
Found this bug when trying to build libcore with the new solver, since it will canonicalize two params with the same index into *different* placeholders if those params differ by name.
Print kind of coroutine closure
Make sure that we print "async closure" when we have an async closure, rather than calling it generically a ["coroutine-closure"](https://github.com/rust-lang/rust/pull/120361).
Fixes#120886
r? oli-obk
Remove the FIXME and keep `CRATE_HIR_ID` being its own parent.
This scheme turned out to be more practical than having an `Option` on closer inspection.
Also make `hir_owner_parent` more readable.
improve normalization of `Pointee::Metadata`
This PR makes it so that `<Wrapper<Tail> as Pointee>::Metadata` is normalized to `<Tail as Pointee>::Metadata` if we don't know `Wrapper<Tail>: Sized`. With that, the trait solver can prove projection predicates like `<Wrapper<Tail> as Pointee>::Metadata == <Tail as Pointee>::Metadata`, which makes it possible to use the metadata APIs to cast between the tail and the wrapper:
```rust
#![feature(ptr_metadata)]
use std::ptr::{self, Pointee};
fn cast_same_meta<T: ?Sized, U: ?Sized>(ptr: *const T) -> *const U
where
T: Pointee<Metadata = <U as Pointee>::Metadata>,
{
let (thin, meta) = ptr.to_raw_parts();
ptr::from_raw_parts(thin, meta)
}
struct Wrapper<T: ?Sized>(T);
fn cast_to_wrapper<T: ?Sized>(ptr: *const T) -> *const Wrapper<T> {
cast_same_meta(ptr)
}
```
Previously, this failed to compile:
```
error[E0271]: type mismatch resolving `<Wrapper<T> as Pointee>::Metadata == <T as Pointee>::Metadata`
--> src/lib.rs:16:5
|
15 | fn cast_to_wrapper<T: ?Sized>(ptr: *const T) -> *const Wrapper<T> {
| - found this type parameter
16 | cast_same_meta(ptr)
| ^^^^^^^^^^^^^^ expected `Wrapper<T>`, found type parameter `T`
|
= note: expected associated type `<Wrapper<T> as Pointee>::Metadata`
found associated type `<T as Pointee>::Metadata`
= note: an associated type was expected, but a different one was found
```
(Yes, you can already do this with `as` casts. But using functions is so much ✨ *safer* ✨, because you can't change the metadata on accident.)
---
This PR essentially changes the built-in impls of `Pointee` from this:
```rust
// before
impl Pointee for u8 {
type Metadata = ();
}
impl Pointee for [u8] {
type Metadata = usize;
}
// ...
impl Pointee for Wrapper<u8> {
type Metadata = ();
}
impl Pointee for Wrapper<[u8]> {
type Metadata = usize;
}
// ...
// This impl is only selected if `T` is a type parameter or unnormalizable projection or opaque type.
fallback impl<T: ?Sized> Pointee for Wrapper<T>
where
Wrapper<T>: Sized
{
type Metadata = ();
}
// This impl is only selected if `T` is a type parameter or unnormalizable projection or opaque type.
fallback impl<T /*: Sized */> Pointee for T {
type Metadata = ();
}
```
to this:
```rust
// after
impl Pointee for u8 {
type Metadata = ();
}
impl Pointee for [u8] {
type Metadata = usize;
}
// ...
impl<T: ?Sized> Pointee for Wrapper<T> {
// in the old solver this will instead project to the "deep" tail directly,
// e.g. `Wrapper<Wrapper<T>>::Metadata = T::Metadata`
type Metadata = <T as Pointee>::Metadata;
}
// ...
// This impl is only selected if `T` is a type parameter or unnormalizable projection or opaque type.
fallback impl<T /*: Sized */> Pointee for T {
type Metadata = ();
}
```
Invert diagnostic lints.
That is, change `diagnostic_outside_of_impl` and `untranslatable_diagnostic` from `allow` to `deny`, because more than half of the compiler has been converted to use translated diagnostics.
This commit removes more `deny` attributes than it adds `allow` attributes, which proves that this change is warranted.
r? ````@davidtwco````
Toggle assert_unsafe_precondition in codegen instead of expansion
The goal of this PR is to make some of the unsafe precondition checks in the standard library available in debug builds. Some UI tests are included to verify that it does that.
The diff is large, but most of it is blessing mir-opt tests and I've also split up this PR so it can be reviewed commit-by-commit.
This PR:
1. Adds a new intrinsic, `debug_assertions` which is lowered to a new MIR NullOp, and only to a constant after monomorphization
2. Rewrites `assume_unsafe_precondition` to check the new intrinsic, and be monomorphic.
3. Skips codegen of the `assume` intrinsic in unoptimized builds, because that was silly before but with these checks it's *very* silly
4. The checks with the most overhead are `ptr::read`/`ptr::write` and `NonNull::new_unchecked`. I've simply added `#[cfg(debug_assertions)]` to the checks for `ptr::read`/`ptr::write` because I was unable to come up with any (good) ideas for decreasing their impact. But for `NonNull::new_unchecked` I found that the majority of callers can use a different function, often a safe one.
Yes, this PR slows down the compile time of some programs. But in our benchmark suite it's never more than 1% icount, and the average icount change in debug-full programs is 0.22%. I think that is acceptable for such an improvement in developer experience.
https://github.com/rust-lang/rust/issues/120539#issuecomment-1922687101
Remove unused args from functions
`#[instrument]` suppresses the unused arguments from a function, *and* suppresses unused methods too! This PR removes things which are only used via `#[instrument]` calls, and fixes some other errors (privacy?) that I will comment inline.
It's possible that some of these arguments were being passed in for the purposes of being instrumented, but I am unconvinced by most of them.
Introduce `enter_forall` to supercede `instantiate_binder_with_placeholders`
r? `@lcnr`
Long term we'd like to experiment with decrementing the universe count after "exiting" binders so that we do not end up creating infer vars in non-root universes even when they logically reside in the root universe. The fact that we dont do this currently results in a number of issues in the new trait solver where we consider goals to be ambiguous because otherwise it would require lowering the universe of an infer var. i.e. the goal `?x.0 eq <T as Trait<?y.1>>::Assoc` where the alias is rigid would not be able to instantiate `?x` with the alias as there would be a universe error.
This PR is the first-ish sort of step towards being able to implement this as eventually we would want to decrement the universe in `enter_forall`. Unfortunately its Difficult to actually implement decrementing universes nicely so this is a separate step which moves us closer to the long term goal ✨