In some places we use `Vec<Attribute>` and some places we use
`ThinVec<Attribute>` (a.k.a. `AttrVec`). This results in various points
where we have to convert between `Vec` and `ThinVec`.
This commit changes the places that use `Vec<Attribute>` to use
`AttrVec`. A lot of this is mechanical and boring, but there are
some interesting parts:
- It adds a few new methods to `ThinVec`.
- It implements `MapInPlace` for `ThinVec`, and introduces a macro to
avoid the repetition of this trait for `Vec`, `SmallVec`, and
`ThinVec`.
Overall, it makes the code a little nicer, and has little effect on
performance. But it is a precursor to removing
`rustc_data_structures::thin_vec::ThinVec` and replacing it with
`thin_vec::ThinVec`, which is implemented more efficiently.
This commit updates the source_file_to_parser and the
maybe_source_file_to_parse function's doc comments which currently
refer to a config parameter. The doc comments have been updated to
refer to the 'session' parameter similar to the doc comment for
try_file_to_source_file, which also takes a &Session parameter.
The `rustc_lint_diagnostics` attribute is used by the diagnostic
translation/struct migration lints to identify calls where
non-translatable diagnostics or diagnostics outwith impls are being
created. Any function used in creating a diagnostic should be annotated
with this attribute so this commit adds the attribute to many more
functions.
Signed-off-by: David Wood <david.wood@huawei.com>
Remove `Nonterminal::NtTT`.
It's only needed for macro expansion, not as a general element in the
AST. This commit removes it, adds `NtOrTt` for the parser and macro
expansion cases, and renames the variants in `NamedMatch` to better
match the new type.
r? `@petrochenkov`
It's only needed for macro expansion, not as a general element in the
AST. This commit removes it, adds `NtOrTt` for the parser and macro
expansion cases, and renames the variants in `NamedMatch` to better
match the new type.
Instead of updating global state to mark attributes as used,
we now explicitly emit a warning when an attribute is used in
an unsupported position. As a side effect, we are to emit more
detailed warning messages (instead of just a generic "unused" message).
`Session.check_name` is removed, since its only purpose was to mark
the attribute as used. All of the callers are modified to use
`Attribute.has_name`
Additionally, `AttributeType::AssumedUsed` is removed - an 'assumed
used' attribute is implemented by simply not performing any checks
in `CheckAttrVisitor` for a particular attribute.
We no longer emit unused attribute warnings for the `#[rustc_dummy]`
attribute - it's an internal attribute used for tests, so it doesn't
mark sense to treat it as 'unused'.
With this commit, a large source of global untracked state is removed.
This PR modifies the macro expansion infrastructure to handle attributes
in a fully token-based manner. As a result:
* Derives macros no longer lose spans when their input is modified
by eager cfg-expansion. This is accomplished by performing eager
cfg-expansion on the token stream that we pass to the derive
proc-macro
* Inner attributes now preserve spans in all cases, including when we
have multiple inner attributes in a row.
This is accomplished through the following changes:
* New structs `AttrAnnotatedTokenStream` and `AttrAnnotatedTokenTree` are introduced.
These are very similar to a normal `TokenTree`, but they also track
the position of attributes and attribute targets within the stream.
They are built when we collect tokens during parsing.
An `AttrAnnotatedTokenStream` is converted to a regular `TokenStream` when
we invoke a macro.
* Token capturing and `LazyTokenStream` are modified to work with
`AttrAnnotatedTokenStream`. A new `ReplaceRange` type is introduced, which
is created during the parsing of a nested AST node to make the 'outer'
AST node aware of the attributes and attribute target stored deeper in the token stream.
* When we need to perform eager cfg-expansion (either due to `#[derive]` or `#[cfg_eval]`),
we tokenize and reparse our target, capturing additional information about the locations of
`#[cfg]` and `#[cfg_attr]` attributes at any depth within the target.
This is a performance optimization, allowing us to perform less work
in the typical case where captured tokens never have eager cfg-expansion run.
When token-based attribute handling is implemeneted in #80689,
we will need to access tokens from `HasAttrs` (to perform
cfg-stripping), and we will to access attributes from `HasTokens` (to
construct a `PreexpTokenStream`).
This PR merges the `HasAttrs` and `HasTokens` traits into a new
`AstLike` trait. The previous `HasAttrs` impls from `Vec<Attribute>` and `AttrVec`
are removed - they aren't attribute targets, so the impls never really
made sense.
Properly handle attributes on statements
We now collect tokens for the underlying node wrapped by `StmtKind`
nstead of storing tokens directly in `Stmt`.
`LazyTokenStream` now supports capturing a trailing semicolon after it
is initially constructed. This allows us to avoid refactoring statement
parsing to wrap the parsing of the semicolon in `parse_tokens`.
Attributes on item statements
(e.g. `fn foo() { #[bar] struct MyStruct; }`) are now treated as
item attributes, not statement attributes, which is consistent with how
we handle attributes on other kinds of statements. The feature-gating
code is adjusted so that proc-macro attributes are still allowed on item
statements on stable.
Two built-in macros (`#[global_allocator]` and `#[test]`) needed to be
adjusted to support being passed `Annotatable::Stmt`.
We now collect tokens for the underlying node wrapped by `StmtKind`
instead of storing tokens directly in `Stmt`.
`LazyTokenStream` now supports capturing a trailing semicolon after it
is initially constructed. This allows us to avoid refactoring statement
parsing to wrap the parsing of the semicolon in `parse_tokens`.
Attributes on item statements
(e.g. `fn foo() { #[bar] struct MyStruct; }`) are now treated as
item attributes, not statement attributes, which is consistent with how
we handle attributes on other kinds of statements. The feature-gating
code is adjusted so that proc-macro attributes are still allowed on item
statements on stable.
Two built-in macros (`#[global_allocator]` and `#[test]`) needed to be
adjusted to support being passed `Annotatable::Stmt`.
Cache pretty-print/retokenize result to avoid compile time blowup
Fixes#79242
If a `macro_rules!` recursively builds up a nested nonterminal
(passing it to a proc-macro at each step), we will end up repeatedly
pretty-printing/retokenizing the same nonterminals. Unfortunately, the
'probable equality' check we do has a non-trivial cost, which leads to a
blowup in compilation time.
As a workaround, we cache the result of the 'probable equality' check,
which eliminates the compilation time blowup for the linked issue. This
commit only touches a single file (other than adding tests), so it
should be easy to backport.
The proper solution is to remove the pretty-print/retokenize hack
entirely. However, this will almost certainly break a large number of
crates that were relying on hygiene bugs created by using the reparsed
`TokenStream`. As a result, we will definitely not want to backport
such a change.
Fixes#79242
If a `macro_rules!` recursively builds up a nested nonterminal
(passing it to a proc-macro at each step), we will end up repeatedly
pretty-printing/retokenizing the same nonterminals. Unfortunately, the
'probable equality' check we do has a non-trivial cost, which leads to a
blowup in compilation time.
As a workaround, we cache the result of the 'probable equality' check,
which eliminates the compilation time blowup for the linked issue. This
commit only touches a single file (other than adding tests), so it
should be easy to backport.
The proper solution is to remove the pretty-print/retokenize hack
entirely. However, this will almost certainly break a large number of
crates that were relying on hygiene bugs created by using the reparsed
`TokenStream`. As a result, we will definitely not want to backport
such a change.
Fixes#78675
We now bail out of `prepend_attrs` if we ended up capturing any inner
attributes (which can happen in several places, due to token capturing
for `macro_rules!` arguments.
This allows us to avoid synthesizing tokens in `prepend_attr`, since we
have the original tokens available.
We still need to synthesize tokens when expanding `cfg_attr`,
but this is an unavoidable consequence of the syntax of `cfg_attr` -
the user does not supply the `#` and `[]` tokens that a `cfg_attr`
expands to.