Compiler & its UI tests: Rename remaining occurrences of "object safe" to "dyn compatible"
Follow-up to #130826.
Part of #130852.
1. 1st commit: Fix stupid oversights. Should've been part of #130826.
2. 2nd commit: Rename the unstable feature `object_safe_for_dispatch` to `dyn_compatible_for_dispatch`. Might not be worth the churn, you decide.
3. 3rd commit: Apply the renaming to all UI tests (contents and paths).
Make opaque types regular HIR nodes
Having opaque types as HIR owner introduces all sorts of complications. This PR proposes to make them regular HIR nodes instead.
I haven't gone through all the test changes yet, so there may be a few surprises.
Many thanks to `@camelid` for the first draft.
Fixes https://github.com/rust-lang/rust/issues/129023Fixes#129099Fixes#125843Fixes#119716Fixes#121422
Add support for reborrowing pinned method receivers
This builds on #130526 to add pinned reborrowing for method receivers. This enables the folllowing examples to work:
```rust
#![feature(pin_ergonomics)]
#![allow(incomplete_features)]
use std::pin::Pin;
pub struct Foo;
impl Foo {
fn foo(self: Pin<&mut Self>) {
}
fn baz(self: Pin<&Self>) {
}
}
pub fn bar(x: Pin<&mut Foo>) {
x.foo();
x.foo();
x.baz(); // Pin<&mut Foo> is downgraded to Pin<&Foo>
}
pub fn baaz(x: Pin<&Foo>) {
x.baz();
x.baz();
}
```
This PR includes the original one, which is currently in the commit queue, but the only code changes are in the latest commit (d3c53aaa5c6fcb1018c58d229bc5d92202fa6880).
#130494
r? `@compiler-errors`
Cleanup some known-bug issues
I went through most of the known-bug tests (except those under `tests/crashes`) and made sure the issue had the `S-bug-has-test` label and checked that the linked issue was open. This is a bunch of cleanups, mainly issues that have been closed and the tests should have been updated.
Importantly, there are many known-bug tests linking to #110395. This *probably* isn't right - that is a tracking issue. But I don't really know what the "right" thing to do here. Probably, most that are actually *supposed* to be tests for const trait need to be linked to *that* tracking issue. And any other tests that were mislabeled need to be handled accordingly e.g. #130482. cc `@fee1-dead`
Begin experimental support for pin reborrowing
This commit adds basic support for reborrowing `Pin` types in argument position. At the moment it only supports reborrowing `Pin<&mut T>` as `Pin<&mut T>` by inserting a call to `Pin::as_mut()`, and only in argument position (not as the receiver in a method call).
This PR makes the following example compile:
```rust
#![feature(pin_ergonomics)]
fn foo(_: Pin<&mut Foo>) {
}
fn bar(mut x: Pin<&mut Foo>) {
foo(x);
foo(x);
}
```
Previously, you would have had to write `bar` as:
```rust
fn bar(mut x: Pin<&mut Foo>) {
foo(x.as_mut());
foo(x);
}
```
Tracking:
- #130494
r? `@compiler-errors`
Generating a call to `as_mut()` let to more restrictive borrows than
what reborrowing usually gives us. Instead, we change the desugaring to
reborrow the pin internals directly which makes things more expressive.
This commit adds basic support for reborrowing `Pin` types in argument
position. At the moment it only supports reborrowing `Pin<&mut T>` as
`Pin<&mut T>` by inserting a call to `Pin::as_mut()`, and only in
argument position (not as the receiver in a method call).
Supress niches in coroutines to avoid aliasing violations
As mentioned [here](https://github.com/rust-lang/rust/issues/63818#issuecomment-2264915918), using niches in fields of coroutines that are referenced by other fields is unsound: the discriminant accesses violate the aliasing requirements of the reference pointing to the relevant field. This issue causes [Miri errors in practice](https://github.com/rust-lang/miri/issues/3780).
The "obvious" fix for this is to suppress niches in coroutines. That's what this PR does. However, we have several tests explicitly ensuring that we *do* use niches in coroutines. So I see two options:
- We guard this behavior behind a `-Z` flag (that Miri will set by default). There is no known case of these aliasing violations causing miscompilations. But absence of evidence is not evidence of absence...
- (What this PR does right now.) We temporarily adjust the coroutine layout logic and the associated tests until the proper fix lands. The "proper fix" here is to wrap fields that other fields can point to in [`UnsafePinned`](https://github.com/rust-lang/rust/issues/125735) and make `UnsafePinned` suppress niches; that would then still permit using niches of *other* fields (those that never get borrowed). However, I know that coroutine sizes are already a problem, so I am not sure if this temporary size regression is acceptable.
`@compiler-errors` any opinion? Also who else should be Cc'd here?
Do not call query to compute coroutine layout for synthetic body of async closure
There is code in the MIR validator that attempts to prevent query cycles when inlining a coroutine into itself, and will use the coroutine layout directly from the body when it detects that's the same coroutine as the one that's being validated. After #128506, this logic didn't take into account the fact that the coroutine def id will differ if it's the "by-move body" of an async closure. This PR implements that.
Fixes#129811
Stabilize opaque type precise capturing (RFC 3617)
This PR partially stabilizes opaque type *precise capturing*, which was specified in [RFC 3617](https://github.com/rust-lang/rfcs/pull/3617), and whose syntax was amended by FCP in [#125836](https://github.com/rust-lang/rust/issues/125836).
This feature, as stabilized here, gives us a way to explicitly specify the generic lifetime parameters that an RPIT-like opaque type captures. This solves the problem of overcapturing, for lifetime parameters in these opaque types, and will allow the Lifetime Capture Rules 2024 ([RFC 3498](https://github.com/rust-lang/rfcs/pull/3498)) to be fully stabilized for RPIT in Rust 2024.
### What are we stabilizing?
This PR stabilizes the use of a `use<'a, T>` bound in return-position impl Trait opaque types. Such a bound fully specifies the set of generic parameters captured by the RPIT opaque type, entirely overriding the implicit default behavior. E.g.:
```rust
fn does_not_capture<'a, 'b>() -> impl Sized + use<'a> {}
// ~~~~~~~~~~~~~~~~~~~~
// This RPIT opaque type does not capture `'b`.
```
The way we would suggest thinking of `impl Trait` types *without* an explicit `use<..>` bound is that the `use<..>` bound has been *elided*, and that the bound is filled in automatically by the compiler according to the edition-specific capture rules.
All non-`'static` lifetime parameters, named (i.e. non-APIT) type parameters, and const parameters in scope are valid to name, including an elided lifetime if such a lifetime would also be valid in an outlives bound, e.g.:
```rust
fn elided(x: &u8) -> impl Sized + use<'_> { x }
```
Lifetimes must be listed before type and const parameters, but otherwise the ordering is not relevant to the `use<..>` bound. Captured parameters may not be duplicated. For now, only one `use<..>` bound may appear in a bounds list. It may appear anywhere within the bounds list.
### How does this differ from the RFC?
This stabilization differs from the RFC in one respect: the RFC originally specified `use<'a, T>` as syntactically part of the RPIT type itself, e.g.:
```rust
fn capture<'a>() -> impl use<'a> Sized {}
```
However, settling on the final syntax was left as an open question. T-lang later decided via FCP in [#125836](https://github.com/rust-lang/rust/issues/125836) to treat `use<..>` as a syntactic bound instead, e.g.:
```rust
fn capture<'a>() -> impl Sized + use<'a> {}
```
### What aren't we stabilizing?
The key goal of this PR is to stabilize the parts of *precise capturing* that are needed to enable the migration to Rust 2024.
There are some capabilities of *precise capturing* that the RFC specifies but that we're not stabilizing here, as these require further work on the type system. We hope to lift these limitations later.
The limitations that are part of this PR were specified in the [RFC's stabilization strategy](https://rust-lang.github.io/rfcs/3617-precise-capturing.html#stabilization-strategy).
#### Not capturing type or const parameters
The RFC addresses the overcapturing of type and const parameters; that is, it allows for them to not be captured in opaque types. We're not stabilizing that in this PR. Since all in scope generic type and const parameters are implicitly captured in all editions, this is not needed for the migration to Rust 2024.
For now, when using `use<..>`, all in scope type and const parameters must be nameable (i.e., APIT cannot be used) and included as arguments. For example, this is an error because `T` is in scope and not included as an argument:
```rust
fn test<T>() -> impl Sized + use<> {}
//~^ ERROR `impl Trait` must mention all type parameters in scope in `use<...>`
```
This is due to certain current limitations in the type system related to how generic parameters are represented as captured (i.e. bivariance) and how inference operates.
We hope to relax this in the future, and this stabilization is forward compatible with doing so.
#### Precise capturing for return-position impl Trait **in trait** (RPITIT)
The RFC specifies precise capturing for RPITIT. We're not stabilizing that in this PR. Since RPITIT already adheres to the Lifetime Capture Rules 2024, this isn't needed for the migration to Rust 2024.
The effect of this is that the anonymous associated types created by RPITITs must continue to capture all of the lifetime parameters in scope, e.g.:
```rust
trait Foo<'a> {
fn test() -> impl Sized + use<Self>;
//~^ ERROR `use<...>` precise capturing syntax is currently not allowed in return-position `impl Trait` in traits
}
```
To allow this involves a meaningful amount of type system work related to adding variance to GATs or reworking how generics are represented in RPITITs. We plan to do this work separately from the stabilization. See:
- https://github.com/rust-lang/rust/pull/124029
Supporting precise capturing for RPITIT will also require us to implement a new algorithm for detecting refining capture behavior. This may involve looking through type parameters to detect cases where the impl Trait type in an implementation captures fewer lifetimes than the corresponding RPITIT in the trait definition, e.g.:
```rust
trait Foo {
fn rpit() -> impl Sized + use<Self>;
}
impl<'a> Foo for &'a () {
// This is "refining" due to not capturing `'a` which
// is implied by the trait's `use<Self>`.
fn rpit() -> impl Sized + use<>;
// This is not "refining".
fn rpit() -> impl Sized + use<'a>;
}
```
This stabilization is forward compatible with adding support for this later.
### The technical details
This bound is purely syntactical and does not lower to a [`Clause`](https://doc.rust-lang.org/1.79.0/nightly-rustc/rustc_middle/ty/type.ClauseKind.html) in the type system. For the purposes of the type system (and for the types team's curiosity regarding this stabilization), we have no current need to represent this as a `ClauseKind`.
Since opaques already capture a variable set of lifetimes depending on edition and their syntactical position (e.g. RPIT vs RPITIT), a `use<..>` bound is just a way to explicitly rather than implicitly specify that set of lifetimes, and this only affects opaque type lowering from AST to HIR.
### FCP plan
While there's much discussion of the type system here, the feature in this PR is implemented internally as a transformation that happens before lowering to the type system layer. We already support impl Trait types partially capturing the in scope lifetimes; we just currently only expose that implicitly.
So, in my (errs's) view as a types team member, there's nothing for types to weigh in on here with respect to the implementation being stabilized, and I'd suggest a lang-only proposed FCP (though we'll of course CC the team below).
### Authorship and acknowledgments
This stabilization report was coauthored by compiler-errors and TC.
TC would like to acknowledge the outstanding and speedy work that compiler-errors has done to make this feature happen.
compiler-errors thanks TC for authoring the RFC, for all of his involvement in this feature's development, and pushing the Rust 2024 edition forward.
### Open items
We're doing some things in parallel here. In signaling the intention to stabilize, we want to uncover any latent issues so we can be sure they get addressed. We want to give the maximum time for discussion here to happen by starting it while other remaining miscellaneous work proceeds. That work includes:
- [x] Look into `syn` support.
- https://github.com/dtolnay/syn/issues/1677
- https://github.com/dtolnay/syn/pull/1707
- [x] Look into `rustfmt` support.
- https://github.com/rust-lang/rust/pull/126754
- [x] Look into `rust-analyzer` support.
- https://github.com/rust-lang/rust-analyzer/issues/17598
- https://github.com/rust-lang/rust-analyzer/pull/17676
- [x] Look into `rustdoc` support.
- https://github.com/rust-lang/rust/issues/127228
- https://github.com/rust-lang/rust/pull/127632
- https://github.com/rust-lang/rust/pull/127658
- [x] Suggest this feature to RfL (a known nightly user).
- [x] Add a chapter to the edition guide.
- https://github.com/rust-lang/edition-guide/pull/316
- [x] Update the Reference.
- https://github.com/rust-lang/reference/pull/1577
### (Selected) implementation history
* https://github.com/rust-lang/rfcs/pull/3498
* https://github.com/rust-lang/rfcs/pull/3617
* https://github.com/rust-lang/rust/pull/123468
* https://github.com/rust-lang/rust/issues/125836
* https://github.com/rust-lang/rust/pull/126049
* https://github.com/rust-lang/rust/pull/126753Closes#123432.
cc `@rust-lang/lang` `@rust-lang/types`
`@rustbot` labels +T-lang +I-lang-nominated +A-impl-trait +F-precise_capturing
Tracking:
- https://github.com/rust-lang/rust/issues/123432
----
For the compiler reviewer, I'll leave some inline comments about diagnostics fallout :^)
r? compiler
Fix projections when parent capture is by-ref but child capture is by-value in the `ByMoveBody` pass
This fixes a somewhat strange bug where we build the incorrect MIR in #129074. This one is weird, but I don't expect it to actually matter in practice since it almost certainly results in a move error in borrowck. However, let's not ICE.
Given the code:
```
#![feature(async_closure)]
// NOT copy.
struct Ty;
fn hello(x: &Ty) {
let c = async || {
*x;
//~^ ERROR cannot move out of `*x` which is behind a shared reference
};
}
fn main() {}
```
The parent coroutine-closure captures `x: &Ty` by-ref, resulting in an upvar of `&&Ty`. The child coroutine captures `x` by-value, resulting in an upvar of `&Ty`. When constructing the by-move body for the coroutine-closure, we weren't applying an additional deref projection to convert the parent capture into the child capture, resulting in an type error in assignment, which is a validation ICE.
As I said above, this only occurs (AFAICT) in code that eventually results in an error, because it is only triggered by HIR that attempts to move a non-copy value out of a ref. This doesn't occur if `Ty` is `Copy`, since we'd instead capture `x` by-ref in the child coroutine.
Fixes#129074
Fix `ElaborateBoxDerefs` on debug varinfo
Slightly simplifies the `ElaborateBoxDerefs` pass to fix cases where it was applying the wrong projections to debug var infos containing places that deref boxes.
From what I can tell[^1], we don't actually have any tests (or code anywhere, really) that exercise `debug x => *(...: Box<T>)`, and it's very difficult to trigger this in surface Rust, so I wrote a custom MIR test.
What happens is that the pass was turning `*(SOME_PLACE: Box<T>)` into `*(*((((SOME_PLACE).0: Unique<T>).0: NonNull<T>).0: *const T))` in debug var infos. In particular, notice the *double deref*, which was wrong.
This is the root cause of #128554, so this PR fixes#128554 as well. The reason that async closures was affected is because of the way that we compute the [`ByMove` body](https://github.com/rust-lang/rust/blob/master/compiler/rustc_mir_transform/src/coroutine/by_move_body.rs), which resulted in `*(...: Box<T>)` in debug var info. But this really has nothing to do with async closures.
[^1]: Validated by literally replacing the `if elem == PlaceElem::Deref && base_ty.is_box() { ... }` innards with a `panic!()`, which compiled all of stage2 without panicking.
Accurately refer to assoc fn without receiver as assoc fn instead of methods.
Add `AssocItem::descr` method to centralize where we call methods and associated functions.
Don't implement `AsyncFn` for `FnDef`/`FnPtr` that wouldnt implement `Fn`
Due to unsafety, ABI, or the presence of target features, some `FnDef`/`FnPtr` types don't implement `Fn*`. Do the same for `AsyncFn*`.
Noticed this due to #128764, but this isn't really related to that ICE, which is fixed in #128792.
Stabilize `const_waker`
Closes: https://github.com/rust-lang/rust/issues/102012.
For `local_waker` and `context_ext` related things, I just ~~moved them to dedicated feature gates and reused their own tracking issue (maybe it's better to open a new one later, but at least they should not be tracked under https://github.com/rust-lang/rust/issues/102012 from the beginning IMO.)~~ reused their own feature gates as suggested by ``@tgross35.``
``@rustbot`` label: +T-libs-api
r? libs-api
Reorder trait bound modifiers *after* `for<...>` binder in trait bounds
This PR suggests changing the grammar of trait bounds from:
```
[CONSTNESS] [ASYNCNESS] [?] [BINDER] [TRAIT_PATH]
const async ? for<'a> Sized
```
to
```
([BINDER] [CONSTNESS] [ASYNCNESS] | [?]) [TRAIT_PATH]
```
i.e., either
```
? Sized
```
or
```
for<'a> const async Sized
```
(but not both)
### Why?
I think it's strange that the binder applies "more tightly" than the `?` trait polarity. This becomes even weirder when considering that we (or at least, I) want to have `async` trait bounds expressed like:
```
where T: for<'a> async Fn(&'a ()) -> i32,
```
and not:
```
where T: async for<'a> Fn(&'a ()) -> i32,
```
### Fallout
No crates on crater use this syntax, presumably because it's literally useless. This will require modifying the reference grammar, though.
### Alternatives
If this is not desirable, then we can alternatively keep parsing `for<'a>` after the `?` but deprecate it with either an FCW (or an immediate hard error), and begin parsing `for<'a>` *before* the `?`.