Stabilize the `#[diagnostic]` namespace and `#[diagnostic::on_unimplemented]` attribute
This PR stabilizes the `#[diagnostic]` attribute namespace and a minimal option of the `#[diagnostic::on_unimplemented]` attribute.
The `#[diagnostic]` attribute namespace is meant to provide a home for attributes that allow users to influence error messages emitted by the compiler. The compiler is not guaranteed to use any of this hints, however it should accept any (non-)existing attribute in this namespace and potentially emit lint-warnings for unused attributes and options. This is meant to allow discarding certain attributes/options in the future to allow fundamental changes to the compiler without the need to keep then non-meaningful options working.
The `#[diagnostic::on_unimplemented]` attribute is allowed to appear on a trait definition. This allows crate authors to hint the compiler to emit a specific error message if a certain trait is not implemented. For the `#[diagnostic::on_unimplemented]` attribute the following options are implemented:
* `message` which provides the text for the top level error message
* `label` which provides the text for the label shown inline in the broken code in the error message
* `note` which provides additional notes.
The `note` option can appear several times, which results in several note messages being emitted. If any of the other options appears several times the first occurrence of the relevant option specifies the actually used value. Any other occurrence generates an lint warning. For any other non-existing option a lint-warning is generated.
All three options accept a text as argument. This text is allowed to contain format parameters referring to generic argument or `Self` by name via the `{Self}` or `{NameOfGenericArgument}` syntax. For any non-existing argument a lint warning is generated.
This allows to have a trait definition like:
```rust
#[diagnostic::on_unimplemented(
message = "My Message for `ImportantTrait<{A}>` is not implemented for `{Self}`",
label = "My Label",
note = "Note 1",
note = "Note 2"
)]
trait ImportantTrait<A> {}
```
which then generates for the following code
```rust
fn use_my_trait(_: impl ImportantTrait<i32>) {}
fn main() {
use_my_trait(String::new());
}
```
this error message:
```
error[E0277]: My Message for `ImportantTrait<i32>` is not implemented for `String`
--> src/main.rs:14:18
|
14 | use_my_trait(String::new());
| ------------ ^^^^^^^^^^^^^ My Label
| |
| required by a bound introduced by this call
|
= help: the trait `ImportantTrait<i32>` is not implemented for `String`
= note: Note 1
= note: Note 2
```
[Playground with the unstable feature](https://play.rust-lang.org/?version=nightly&mode=debug&edition=2021&gist=05133acce8e1d163d481e97631f17536)
Fixes#111996
Rollup of 10 pull requests
Successful merges:
- #121863 (silence mismatched types errors for implied projections)
- #122043 (Apply `EarlyBinder` only to `TraitRef` in `ImplTraitHeader`)
- #122066 (Add proper cfgs for struct HirIdValidator used only with debug-assert)
- #122104 (Rust is a proper name: rust → Rust)
- #122110 (Make `x t miri` respect `MIRI_TEMP`)
- #122114 (Make not finding core a fatal error)
- #122115 (Cancel parsing ever made during recovery)
- #122123 (Don't require specifying unrelated assoc types when trait alias is in `dyn` type)
- #122126 (Fix `tidy --bless` on ̶X̶e̶n̶i̶x̶ Windows)
- #122129 (Set `RustcDocs` to only run on host)
r? `@ghost`
`@rustbot` modify labels: rollup
Fix `tidy --bless` on ̶X̶e̶n̶i̶x̶ Windows
As reported in https://github.com/rust-lang/rust/pull/120628#issuecomment-1973655740 the requested `tidy --bless` implementation didn't take into account the fact that earlier the linting code canonicalized things to use the OS path separator. This makes it so that the path separator is always rewritten back as '/', which should fix the variance there.
r? ``@ChrisDenton``
Don't require specifying unrelated assoc types when trait alias is in `dyn` type
Object types must specify the associated types for all of the principal trait ref's supertraits. However, we weren't doing elaboration properly, so we incorrectly errored with erroneous suggestions to specify associated types that were unrelated to that principal trait ref. To fix this, use proper supertrait elaboration when expanding trait aliases in `conv_object_ty_poly_trait_ref`.
**NOTE**: Please use the ignore-whitespace option when reviewing. This only touches a handful of lines.
r? oli-obk or please feel free to reassign.
Fixes#122118
Make not finding core a fatal error
Similar to https://github.com/rust-lang/rust/pull/120472, this prevents terminal spam. In particular, it makes the good diagnostic visible when you try to use a target that's not installed.
Apply `EarlyBinder` only to `TraitRef` in `ImplTraitHeader`
Resolves#121852
This PR
1. Moves `EarlyBinder` to `TraitRef` inside `ImplTraitHeader`,
2. Changes visibility of `coherence::builtin::check_trait` to `pub(super)` from `pub` as it seems not being re-exported from the `coherence` module.
silence mismatched types errors for implied projections
Currently, if a trait bound is not satisfied, then we suppress any errors for the trait's supertraits not being satisfied, but still report errors for super projections not being satisfied.
For example:
```rust
trait Super {
type Assoc;
}
trait Sub: Super<Assoc = ()> {}
```
Before this PR, if `T: Sub` is not satisfied, then errors for `T: Super` are suppressed, but errors for `<T as Super>::Assoc == ()` are still shown. This PR makes it so that errors about super projections not being satisfied are also suppressed.
The errors are only suppressed if the span of the trait obligation matches the span of the super predicate obligation to avoid silencing error that are not related. This PR removes some differences between the spans of supertraits and super projections to make the suppression work correctly.
This PR fixes the majority of the diagnostics fallout when making `Thin` a supertrait of `Sized` (in a future PR).
cc https://github.com/rust-lang/rust/pull/120354#issuecomment-1930585382
cc `@lcnr`
Don't lint `redundant_field_names` across macro boundaries
Fixes#12426
The `field.span.eq_ctxt(field.ident.span)` addition is the relevant line for the bugfix
The current implementation checks that the field's name and the path are in the same context by comparing the idents, but not that the two are in the same context as the entire field itself, so in local macros `SomeStruct { $ident: $ident }` would get linted
changelog: none
interpret: avoid a long-lived PlaceTy in stack frames
`PlaceTy` uses a representation that's not very stable under changes to the stack. I'd feel better if we didn't have one in the long-term machine state.
r? `@oli-obk`
This method would previously take a target scope, and then verify that it
was equal to the scope on top of the if-then scope stack.
In practice, this means that callers have to go out of their way to pass around
redundant scope information that's already on the if-then stack.
So it's easier to just retrieve the correct scope directly from the if-then
stack, and simplify the other code that was passing it around.
Merge `check_mod_impl_wf` and `check_mod_type_wf`
This still causes some funny diagnostics, but I'm not sure they can be fixed without a larger change, which I'd like to avoid here.
Reducing the number of times we iterate over the same items at this high level helps avoid parallel-compiler bottlenecks.