Pass Ident by reference in ast Visitor
`MutVisitor`'s version of `visit_ident` passes around `&Ident`, but `Visitor` copies `Ident`. This PR changes that
r? `@petrochenkov`
related to #128974
Remove visit_expr_post from ast Visitor
`visit_expr_post` is only present in the immutable version of ast Visitors and its default implementation is a noop.
Given that its only implementer is on `rustc_lint/src/early.rs` and its name follows the same naming convention as some other lints (`_post`), it seems that `visit_expr_post` being in `Visitor` was a little mistake.
r? `@petrochenkov`
related to #128974
Stabilize shorter-tail-lifetimes
Close#131445
Tracked by #123739
We found a test case `tests/ui/drop/drop_order.rs` that had not been covered by the change. The test fixture is fixed now with the correct expectation.
Represent trait constness as a distinct predicate
cc `@rust-lang/project-const-traits`
r? `@ghost` for now
Also mirrored everything that is written below on this hackmd here: https://hackmd.io/`@compiler-errors/r12zoixg1l`
# Tl;dr:
* This PR removes the bulk of the old effect desugaring.
* This PR reimplements most of the effect desugaring as a new predicate and set of a couple queries. I believe it majorly simplifies the implementation and allows us to move forward more easily on its implementation.
I'm putting this up both as a request for comments and a vibe-check, but also as a legitimate implementation that I'd like to see land (though no rush of course on that last part).
## Background
### Early days
Once upon a time, we represented trait constness in the param-env and in `TraitPredicate`. This was very difficult to implement correctly; it had bugs and was also incomplete; I don't think this was anyone's fault though, it was just the limit of experimental knowledge we had at that point.
Dealing with `~const` within predicates themselves meant dealing with constness all throughout the trait solver. This was difficult to keep track of, and afaict was not handled well with all the corners of candidate assembly.
Specifically, we had to (in various places) remap constness according to the param-env constness:
574b64a97f/compiler/rustc_trait_selection/src/traits/select/mod.rs (L1498)
This was annoying and manual and also error prone.
### Beginning of the effects desugaring
Later on, #113210 reimplemented a new desugaring for const traits via a `<const HOST: bool>` predicate. This essentially "reified" the const checking and separated it from any of the remapping or separate tracking in param-envs. For example, if I was in a const-if-const environment, but I wanted to call a trait that was non-const, this reification would turn the constness mismatch into a simple *type* mismatch of the effect parameter.
While this was a monumental step towards straightening out const trait checking in the trait system, it had its own issues, since that meant that the constness of a trait (or any item within it, like an associated type) was *early-bound*. This essentially meant that `<T as Trait>::Assoc` was *distinct* from `<T as ~const Trait>::Assoc`, which was bad.
### Associated-type bound based effects desugaring
After this, #120639 implemented a new effects desugaring. This used an associated type to more clearly represent the fact that the constness is not an input parameter of a trait, but a property that could be computed of a impl. The write-up linked in that PR explains it better than I could.
However, I feel like it really reached the limits of what can comfortably be expressed in terms of associated type and trait calculus. Also, `<const HOST: bool>` remains a synthetic const parameter, which is observable in nested items like RPITs and closures, and comes with tons of its own hacks in the astconv and middle layer.
For example, there are pieces of unintuitive code that are needed to represent semantics like elaboration, and eventually will be needed to make error reporting intuitive, and hopefully in the future assist us in implementing built-in traits (eventually we'll want something like `~const Fn` trait bounds!).
elaboration hack: 8069f8d17a/compiler/rustc_type_ir/src/elaborate.rs (L133-L195)
trait bound remapping hack for diagnostics: 8069f8d17a/compiler/rustc_trait_selection/src/error_reporting/traits/fulfillment_errors.rs (L2370-L2413)
I want to be clear that I don't think this is a issue of implementation quality or anything like that; I think it's simply a very clear sign that we're using types and traits in a way that they're not fundamentally supposed to be used, especially given that constness deserves to be represented as a first-class concept.
### What now?
This PR implements a new desugaring for const traits. Specifically, it introduces a `HostEffect` predicate to represent the obligation an impl is const, rather than using associated type bounds and the compat trait that exists for effects today.
### `HostEffect` predicate
A `HostEffect` clause has two parts -- the `TraitRef` we're trying to prove, and a `HostPolarity::{Maybe, Const}`.
`HostPolarity::Const` corresponds to `T: const Trait` bounds, which must *always* be proven as const, and which can be written in any context. These are lowered directly into the predicates of an item, since they're not "context-specific".
On the other hand, `HostPolarity::Maybe` corresponds to `T: ~const Trait` bounds which must only exist in a conditionally-const context like a method in a `#[const_trait]`, or a `const fn` free function. We do not lower these immediately into the predicates of an item; instead, we collect them into a new query called the **`const_conditions`**. These are the set of trait refs that we need to prove have const implementations for an item to be const.
Notably, they're represented as bare (poly) trait refs because they are meant to be paired back together with a `HostPolarity` when they're being registered in typeck (see next section).
For example, given:
```rust
const fn foo<T: ~const A + const B>() {}
```
`foo`'s const conditions would contain `T: A`, but not `T: B`. On the flip side, foo's predicates (`predicates_of`) query would contain `HostEffect(T: B, HostPolarity::Const)` but not `HostEffect(T: A, HostPolarity::Maybe)` since we don't need to prove that predicate in a non-const environment (and it's not even the right predicate to prove in an unconditionally const environment).
### Type checking const bodies
When type checking bodies in HIR, when we encounter a call expression, we additionally register the callee item's const conditions with the `HostPolarity` from the body we're typechecking (`Const` for unconditionally const things like `const`/`static` items, and `Maybe` for conditionally const things like const fns; and we don't register `HostPolarity` predicates for non-const bodies).
When type-checking a conditionally const body, we augment its param-env with `HostEffect(..., Maybe)` predicates.
### Checking that const impls are WF
We extend the logic in `compare_method_predicate_entailment` to also check the const-conditions of the impl method, to make sure that we error for:
```rust
#[const_trait] Bar {}
#[const_trait] trait Foo {
fn method<T: Bar>();
}
impl Foo for () {
fn method<T: ~const Bar>() {} // stronger assumption!
}
```
We also extend the WF check for impls to register the const conditions of the trait that is being implemented. This is to make sure we error for:
```rust
#[const_trait] trait Bar {}
#[const_trait] trait Foo<T> where T: ~const Bar {}
impl<T> const Foo<T> for () {}
//~^ `T: ~const Bar` is missing!
```
### Proving a `HostEffect` predicate
We have several ways of proving a `HostEffect` predicate:
1. Matching a `HostEffect` predicate from the param-env
2. From an impl - we do impl selection very similar to confirming a trait goal, except we filter for only const impls, and we additionally register the impl's const conditions (i.e. the impl's `~const` where clauses).
Later I expect that we will add more built-in implementations for things like `Fn`.
## What next?
After this PR, I'd like to split out the work more so it can proceed in parallel and probably amongst others that are not me.
* Register `HostEffect` goal for places in HIR typeck that correspond to call terminators, like autoderef.
* Make traits in libstd const again.
* Probably need to impl host effect preds in old solver.
* Implement built-in `HostEffect` rules for traits like `Fn`.
* Rip out const checking from MIR altogether.
## So what?
This ends up being super convenient basically everywhere in the compiler. Due to the design of the new trait solver, we end up having an almost parallel structure to the existing trait and projection predicates for assembling `HostEffect` predicates; adding new candidates and especially new built-in implementations is now basically trivial, and it's quite straightforward to understand the confirmation logic for these predicates.
Same with diagnostics reporting; since we have predicates which represent the obligation to prove an impl is const, we can simplify and make these diagnostics richer without having to write a ton of logic to intercept and rewrite the existing `Compat` trait errors.
Finally, it gives us a much more straightforward path for supporting the const effect on the old trait solver. I'm personally quite passionate about getting const trait support into the hands of users without having to wait until the new solver lands[^1], so I think after this PR lands we can begin to gauge how difficult it would be to implement constness in the old trait solver too. This PR will not do this yet.
[^1]: Though this is not a prerequisite or by any means the only justification for this PR.
Taking a raw ref (`&raw (const|mut)`) of a deref of pointer (`*ptr`) is always safe
T-opsem decided in https://github.com/rust-lang/reference/pull/1387 that `*ptr` is only unsafe if the place is accessed. This means that taking a raw ref of a deref expr is always safe, since it doesn't constitute a read.
This also relaxes the `DEREF_NULLPTR` lint to stop warning in the case of raw ref of a deref'd nullptr, and updates its docs to reflect that change in the UB specification.
This does not change the behavior of `addr_of!((*ptr).field)`, since field projections still require the projection is in-bounds.
I'm on the fence whether this requires an FCP, since it's something that is guaranteed by the reference you could ostensibly call this a bugfix since we were counting truly safe operations as unsafe. Perhaps someone on opsem has a strong opinion? cc `@rust-lang/opsem`
terminology: #[feature] *enables* a feature (instead of "declaring" or "activating" it)
Mostly, we currently call a feature that has a corresponding `#[feature(name)]` attribute in the current crate a "declared" feature. I think that is confusing as it does not align with what "declaring" usually means. Furthermore, we *also* refer to `#[stable]`/`#[unstable]` as *declaring* a feature (e.g. in [these diagnostics](f25e5abea2/compiler/rustc_passes/messages.ftl (L297-L301))), which aligns better with what "declaring" usually means. To make things worse, the functions `tcx.features().active(...)` and `tcx.features().declared(...)` both exist and they are doing almost the same thing (testing whether a corresponding `#[feature(name)]` exists) except that `active` would ICE if the feature is not an unstable lang feature. On top of this, the callback when a feature is activated/declared is called `set_enabled`, and many comments also talk about "enabling" a feature.
So really, our terminology is just a mess.
I would suggest we use "declaring a feature" for saying that something is/was guarded by a feature (e.g. `#[stable]`/`#[unstable]`), and "enabling a feature" for `#[feature(name)]`. This PR implements that.
make unsupported_calling_conventions a hard error
This has been a future-compat lint (not shown in dependencies) since Rust 1.55, released 3 years ago. Hopefully that was enough time so this can be made a hard error now. Given that long timeframe, I think it's justified to skip the "show in dependencies" stage. There were [not many crates hitting this](https://github.com/rust-lang/rust/pull/86231#issuecomment-866300943) even when the lint was originally added.
This should get cratered, and I assume then it needs a t-compiler FCP. (t-compiler because this looks entirely like an implementation oversight -- for the vast majority of ABIs, we already have a hard error, but some were initially missed, and we are finally fixing that.)
Fixes https://github.com/rust-lang/rust/pull/87678
Finish stabilization of `result_ffi_guarantees`
The internal linting has been changed, so all that is left is making sure we stabilize what we want to stabilize.
Continue to get rid of `ty::Const::{try_}eval*`
This PR mostly does:
* Removes all of the `try_eval_*` and `eval_*` helpers from `ty::Const`, and replace their usages with `try_to_*`.
* Remove `ty::Const::eval`.
* Rename `ty::Const::normalize` to `ty::Const::normalize_internal`. This function is still used in the normalization code itself.
* Fix some weirdness around the `TransmuteFrom` goal.
I'm happy to split it out further; for example, I could probably land the first part which removes the helpers, or the changes to codegen which are more obvious than the changes to tools.
r? BoxyUwU
Part of https://github.com/rust-lang/rust/issues/130704
Allow `#[deny]` inside `#[forbid]` as a no-op
Forbid cannot be overriden. When someome tries to do this anyways, it results in a hard error. That makes sense.
Except it doesn't, because macros. Macros may reasonably use `#[deny]` (or `#[warn]` for an allow-by-default lint) in their expansion to assert that their expanded code follows the lint. This is doesn't work when the output gets expanded into a `forbid()` context. This is pretty silly, since both the macros and the code agree on the lint!
By making it a warning instead, we remove the problem with the macro, which is now nothing as warnings are suppressed in macro expanded code, while still telling users that something is up.
fixes#121483
warn less about non-exhaustive in ffi
Bindgen allows generating `#[non_exhaustive] #[repr(u32)]` enums. This results in nonintuitive nonlocal `improper_ctypes` warnings, even when the types are otherwise perfectly valid in C.
Adjust for actual tooling expectations by avoiding warning on simple enums with only unit variants.
Closes https://github.com/rust-lang/rust/issues/116831
Before this change, adding a lint was a difficult matter
because it always had some overhead involved. This was
because all lints would run, no matter their default level,
or if the user had #![allow]ed them. This PR changes that
Forbid cannot be overriden. When someome tries to do this anyways,
it results in a hard error. That makes sense.
Except it doesn't, because macros. Macros may reasonably use `#[deny]`
in their expansion to assert
that their expanded code follows the lint. This is doesn't work when the
output gets expanded into a `forbid()` context. This is pretty silly,
since both the macros and the code agree on the lint!
Therefore, we allow `#[deny(..)]`ing a lint that's already forbidden,
keeping the level at forbid.
Move polarity into `PolyTraitRef` rather than storing it on the side
Arguably we could move these modifiers into `TraitRef` instead of `PolyTraitRef`, but I see `TraitRef` as simply the *path* part of the trait ref. It doesn't really matter -- refactoring this further is much easier now.
Remove deprecation note in the `non_local_definitions` lint
This PR removes the edition deprecation note emitted by the `non_local_definitions` lint.
Specifically this part:
```
= note: this lint may become deny-by-default in the edition 2024 and higher, see the tracking issue <https://github.com/rust-lang/rust/issues/120363>
```
because it [didn't make the cut](https://github.com/rust-lang/rust/issues/120363#issuecomment-2407833300) for the 2024 edition.
`@rustbot` label +L-non_local_definitions
Make unused_parens's suggestion considering expr's attributes.
For the expr with attributes,
like `let _ = (#[inline] || println!("Hello!"));`,
the suggestion's span should contains the attributes, or the suggestion will remove them.
fixes#129833
For the expr with attributes, like `let _ = (#[inline] || println!("Hello!"));`, the suggestion's span should contains the attributes, or the suggestion will remove them.
fixes#129833
Consider outermost const-anon in `non_local_def` lint
This PR change the logic for finding the parent of the `impl` definition in the `non_local_definitions` lint to consider multiple level of const-anon items, instead of only one currently.
I also took the opportunity to cleanup the related code.
cc ``@traviscross``
Fixes https://github.com/rust-lang/rust/issues/131474
Make deprecated_cfg_attr_crate_type_name a hard error
Turns the forward compatibility lint added by #83744 into a hard error, so now, while the `#![crate_name]` and `#![crate_type]` attributes are still allowed in raw form, they are now forbidden to be nested inside a `#![cfg_attr()]` attribute.
The following will now be an error:
```Rust
#![cfg_attr(foo, crate_name = "foobar")]
#![cfg_attr(foo, crate_type = "bin")]
```
This code will continue working and is not deprecated:
```Rust
#![crate_name = "foobar"]
#![crate_type = "lib"]
```
The reasoning for this is explained in #83744: it allows us to not have to cfg-expand in order to determine the crate's type and name.
As of filing the PR, exactly two years have passed since #99784 has been merged, which has turned the lint's default warning level into an error, so there has been ample time to move off the now-forbidden syntax.
cc #91632 - tracking issue for the lint
Make opaque types regular HIR nodes
Having opaque types as HIR owner introduces all sorts of complications. This PR proposes to make them regular HIR nodes instead.
I haven't gone through all the test changes yet, so there may be a few surprises.
Many thanks to `@camelid` for the first draft.
Fixes https://github.com/rust-lang/rust/issues/129023Fixes#129099Fixes#125843Fixes#119716Fixes#121422
Stabilize the `map`/`value` methods on `ControlFlow`
And fix the stability attribute on the `pub use` in `core::ops`.
libs-api in https://github.com/rust-lang/rust/issues/75744#issuecomment-2231214910 seemed reasonably happy with naming for these, so let's try for an FCP.
Summary:
```rust
impl<B, C> ControlFlow<B, C> {
pub fn break_value(self) -> Option<B>;
pub fn map_break<T>(self, f: impl FnOnce(B) -> T) -> ControlFlow<T, C>;
pub fn continue_value(self) -> Option<C>;
pub fn map_continue<T>(self, f: impl FnOnce(C) -> T) -> ControlFlow<B, T>;
}
```
Resolves#75744
``@rustbot`` label +needs-fcp +t-libs-api -t-libs
---
Aside, in case it keeps someone else from going down the same dead end: I looked at the `{break,continue}_value` methods and tried to make them `const` as part of this, but that's disallowed because of not having `const Drop`, so put it back to not even unstably-const.
Preserve brackets around if-lets and skip while-lets
r? `@jieyouxu`
Tracked by #124085
Fresh out of #129466, we have discovered 9 crates that the lint did not successfully migrate because the span of `if let` includes the surrounding brackets `(..)` like the following, which surprised me a bit.
```rust
if (if let .. { .. } else { .. }) {
// ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// the span somehow includes the surrounding brackets
}
```
There is one crate that failed the migration because some suggestion spans cross the macro expansion boundaries. Surely there is no way to patch them with `match` rewrite. To handle this case, we will instead require all spans to be tested for admissibility as suggestion spans.
Besides, there are 4 false negative cases discovered with desugared-`while let`. We don't need to lint them, because the `else` branch surely contains exactly one statement because the drop order is not changed whatsoever in this case.
```rust
while let Some(value) = droppy().get() {
..
}
// is desugared into
loop {
if let Some(value) = droppy().get() {
..
} else {
break;
// here can be nothing observable in this block
}
}
```
I believe this is the one and only false positive that I have found. I think we have finally nailed all the corner cases this time.
Make clashing_extern_declarations considering generic args for ADT field
In following example, G<u16> should be recognized as different from G<u32> :
```rust
#[repr(C)] pub struct G<T> { g: [T; 4] }
pub mod x { extern "C" { pub fn g(_: super::G<u16>); } }
pub mod y { extern "C" { pub fn g(_: super::G<u32>); } }
```
fixes#130851
Revert "Add recursion limit to FFI safety lint"
It's not necessarily clear if warning when we hit the recursion limit is the right thing to do, first of all.
**More importantly**, this PR was implemented incorrectly in the first place; it was not decrementing the recursion limit when stepping out of a type, so it would trigger when a ctype has more than RECURSION_LIMIT fields *anywhere* in the type's set of recursively reachable fields.
Reverts #130598Reopens#130310Fixes#130757
Rework `non_local_definitions` lint to only use a syntactic heuristic
This PR reworks the `non_local_definitions` lint to only use a syntactic heuristic, i.e. not use a type-system logic for whenever an `impl` is local or not.
Instead the new logic wanted by T-lang in https://github.com/rust-lang/rust/issues/126768#issuecomment-2192634762, which is to consider every paths in `Self` and `Trait` and to no longer use the type-system inference trick.
`@rustbot` labels +L-non_local_definitions
Fixes#126768
Explain why `non_snake_case` is skipped for binary crates and cleanup tests
- Explain `non_snake_case` lint is skipped for bin crate names because binaries are not intended to be distributed or consumed like library crates (#45127).
- Coalesce the bunch of tests into a single one but with revisions, which is easier to compare the differences for `non_snake_case` behavior with respect to crate types.
Follow-up to #121749 with some more comments and test cleanup.
cc `@saethlin` who bumped into one of the tests and was confused why it was `only-x86_64-unknown-linux-gnu`.
try-job: dist-i586-gnu-i586-i686-musl
compiler: factor out `OVERFLOWING_LITERALS` impl
This puts it into `rustc_lint/src/types/literal.rs`. It then uses the fact that it's easier to navigate the logic to identify something that can easily be factored out, as an instance of "why".
Add recursion limit to FFI safety lint
Fixes#130310
Now we check against `tcx.recursion_limit()` and raise an error if it the limit is reached instead of overflowing the stack.
Bindgen allows generating `#[non_exhaustive] #[repr(u32)]` enums.
This results in nonintuitive nonlocal `improper_ctypes` warnings,
even when the types are otherwise perfectly valid in C.
Adjust for actual tooling expectations by avoiding warning on
simple enums with only unit variants.
Improve handling of raw-idents in check-cfg
This PR improves the handling of raw-idents in the check-cfg diagnostics.
In particular the list of expected names and the suggestion now correctly take into account the "keyword-ness" of the ident, and correctly prefix the ident with `r#` when necessary.
`@rustbot` labels +F-check-cfg
Make some lint doctests compatible with `--stage=0`
Currently, running `x test compiler --stage=0` (with `rust.parallel-compiler=false` to avoid other problems) results in two failures, because these lint doctests aren't compatible with the current stage0 compiler.
In theory, the more “correct” solution would be to wrap the opening triple-backtick line in `#[cfg_attr(not(bootstrap), doc = "..."]`. However, that causes a few practical problems:
- `tidy` doesn't understand that syntax, and miscounts the number of backticks in the comment block.
- `lint-docs` doesn't understand that syntax, and thinks it's trying to declare the lint name.
- Working around the above problems would cause more work and more confusion for whoever does the next bootstrap beta bump.
So instead this PR adds some bootstrap gates inside the individual doctests, which end up producing the desired behaviour, and are straightforward to remove.
const-eval interning: accept interior mutable pointers in final value
…but keep rejecting mutable references
This fixes https://github.com/rust-lang/rust/issues/121610 by no longer firing the lint when there is a pointer with interior mutability in the final value of the constant. On stable, such pointers can be created with code like:
```rust
pub enum JsValue {
Undefined,
Object(Cell<bool>),
}
impl Drop for JsValue {
fn drop(&mut self) {}
}
// This does *not* get promoted since `JsValue` has a destructor.
// However, the outer scope rule applies, still giving this 'static lifetime.
const UNDEFINED: &JsValue = &JsValue::Undefined;
```
It's not great to accept such values since people *might* think that it is legal to mutate them with unsafe code. (This is related to how "infectious" `UnsafeCell` is, which is a [wide open question](https://github.com/rust-lang/unsafe-code-guidelines/issues/236).) However, we [explicitly document](https://doc.rust-lang.org/reference/behavior-considered-undefined.html) that things created by `const` are immutable. Furthermore, we also accept the following even more questionable code without any lint today:
```rust
let x: &'static Option<Cell<i32>> = &None;
```
This is even more questionable since it does *not* involve a `const`, and yet still puts the data into immutable memory. We could view this as promotion [potentially introducing UB](https://github.com/rust-lang/unsafe-code-guidelines/issues/493). However, we've accepted this since ~forever and it's [too late to reject this now](https://github.com/rust-lang/rust/pull/122789); the pattern is just too useful.
So basically, if you think that `UnsafeCell` should be tracked fully precisely, then you should want the lint we currently emit to be removed, which this PR does. If you think `UnsafeCell` should "infect" surrounding `enum`s, the big problem is really https://github.com/rust-lang/unsafe-code-guidelines/issues/493 which does not trigger the lint -- the cases the lint triggers on are actually the "harmless" ones as there is an explicit surrounding `const` explaining why things end up being immutable.
What all this goes to show is that the hard error added in https://github.com/rust-lang/rust/pull/118324 (later turned into the future-compat lint that I am now suggesting we remove) was based on some wrong assumptions, at least insofar as it concerns shared references. Furthermore, that lint does not help at all for the most problematic case here where the potential UB is completely implicit. (In fact, the lint is actively in the way of [my preferred long-term strategy](https://github.com/rust-lang/unsafe-code-guidelines/issues/493#issuecomment-2028674105) for dealing with this UB.) So I think we should go back to square one and remove that error/lint for shared references. For mutable references, it does seem to work as intended, so we can keep it. Here it serves as a safety net in case the static checks that try to contain mutable references to the inside of a const initializer are not working as intended; I therefore made the check ICE to encourage users to tell us if that safety net is triggered.
Closes https://github.com/rust-lang/rust/issues/122153 by removing the lint.
Cc `@rust-lang/opsem` `@rust-lang/lang`
Failing to do this results in the lint example output complaining
about the lint not existing instead of the thing the lint is supposed
to be complaining about.
- Replace non-standard names like 's, 'p, 'rg, 'ck, 'parent, 'this, and
'me with vanilla 'a. These are cases where the original name isn't
really any more informative than 'a.
- Replace names like 'cx, 'mir, and 'body with vanilla 'a when the lifetime
applies to multiple fields and so the original lifetime name isn't
really accurate.
- Put 'tcx last in lifetime lists, and 'a before 'b.
Rescope temp lifetime in if-let into IfElse with migration lint
Tracking issue #124085
This PR shortens the temporary lifetime to cover only the pattern matching and consequent branch of a `if let`.
At the expression location, means that the lifetime is shortened from previously the deepest enclosing block or statement in Edition 2021. This warrants an Edition change.
Coming with the Edition change, this patch also implements an edition lint to warn about the change and a safe rewrite suggestion to preserve the 2021 semantics in most cases.
Related to #103108.
Related crater runs: https://github.com/rust-lang/rust/pull/129466.
Simplify some nested `if` statements
Applies some but not all instances of `clippy::collapsible_if`. Some ended up looking worse afterwards, though, so I left those out. Also applies instances of `clippy::collapsible_else_if`
Review with whitespace disabled please.
Enumerate lint expectations using AttrId
This PR implements the idea I outlined in https://github.com/rust-lang/rust/issues/127884#issuecomment-2240338547
We can uniquely identify a lint expectation `#[expect(lint0, lint1...)]` using the `AttrId` and the index of the lint inside the attribute. This PR uses this property in `check_expectations`.
In addition, this PR stops stashing expected diagnostics to wait for the unstable -> stable `LintExpectationId` mapping: if the lint is emitted with an unstable attribute, it must have been emitted by an `eval_always` query (like inside the resolver), so won't be loaded from cache. Decoding an `AttrId` from the on-disk cache ICEs, so we have no risk of accidentally checking an expectation.
Fixes https://github.com/rust-lang/rust/issues/127884
cc `@xFrednet`
Also emit `missing_docs` lint with `--test` to fulfil expectations
This PR removes the "test harness" suppression of the `missing_docs` lint to be able to fulfil `#[expect]` (expectations) as it is now "relevant".
I think the goal was to maybe avoid false-positive while linting on public items under `#[cfg(test)]` but with effective visibility we should no longer have any false-positive.
Another possibility would be to query the lint level and only emit the lint if it's of expect level, but that is even more hacky.
Fixes https://github.com/rust-lang/rust/issues/130021
try-job: x86_64-gnu-aux
Implement raw lifetimes and labels (`'r#ident`)
This PR does two things:
1. Reserve lifetime prefixes, e.g. `'prefix#lt` in edition 2021.
2. Implements raw lifetimes, e.g. `'r#async` in edition 2021.
This PR additionally extends the `keyword_idents_2024` lint to also check lifetimes.
cc `@traviscross`
r? parser
Make `Ty::boxed_ty` return an `Option`
Looks like a good place to use Rust's type system.
---
Most of 4ac7bcbaad/compiler/rustc_middle/src/ty/sty.rs (L971-L1963) looks like it could be moved to `TyKind` (then I guess `Ty` should be made to deref to `TyKind`).
Deny imports of `rustc_type_ir::inherent` outside of type ir + new trait solver
We shouldn't encourage using `rustc_type_ir::inherent` outside of the new solver[^1], though this can happen by accident due to rust-analyzer, for example. See https://github.com/rust-lang/rust/pull/127537#discussion_r1733813842 for an example in practice.
r? fmease
[^1]: Unless we go the fully radical approach of always using these inherent methods everywhere in favor of inherent methods, which would be a major overhaul of the compiler, IMO. I don't really want to consider that possibility right now, tho.
Rewrite lint_expectations in a single pass.
This PR aims at reducing the perf regression from https://github.com/rust-lang/rust/pull/120924#issuecomment-2202486203 with drive-by simplifications.
Basically, instead of using the lint level builder, which is slow, this PR splits `lint_expectations` logic in 2:
- listing the `LintExpectations` is done in `shallow_lint_levels_on`, on a per-owner basis;
- building the unstable->stable expectation id map is done by iterating on attributes.
r? ghost for perf
Stop using `ty::GenericPredicates` for non-predicates_of queries
`GenericPredicates` is a struct of several parts: A list of of an item's own predicates, and a parent def id (and some effects related stuff, but ignore that since it's kinda irrelevant). When instantiating these generic predicates, it calls `predicates_of` on the parent and instantiates its predicates, and appends the item's own instantiated predicates too:
acb4e8b625/compiler/rustc_middle/src/ty/generics.rs (L407-L413)
Notice how this should result in a recursive set of calls to `predicates_of`... However, `GenericPredicates` is *also* misused by a bunch of *other* queries as a convenient way of passing around a list of predicates. For these queries, we don't ever set the parent def id of the `GenericPredicates`, but if we did, then this would be very easy to mistakenly call `predicates_of` instead of some other intended parent query.
Given that footgun, and the fact that we don't ever even *use* the parent def id in the `GenericPredicates` returned from queries like `explicit_super_predicates_of`, It really has no benefit over just returning `&'tcx [(Clause<'tcx>, Span)]`.
This PR additionally opts to wrap the results of `EarlyBinder`, as we've tended to use that in the return type of these kinds of queries to properly convey that the user has params to deal with, and it also gives a convenient way of iterating over a slice of things after instantiating.
Tie `impl_trait_overcaptures` lint to Rust 2024
The `impl_trait_overcaptures` lint is part of the migration to Rust 2024 and the Lifetime Capture Rules 2024. Now that we've stabilized precise capturing (RFC 3617), let's tie this lint to the `rust_2024_compatibility` lint group.
Tracking:
- https://github.com/rust-lang/rust/issues/117587
r? `@compiler-errors`
The `impl_trait_overcaptures` lint is part of the migration to Rust
2024 and the Lifetime Capture Rules 2024. Now that we've stabilized
precise capturing (RFC 3617), let's tie this lint to the
`rust_2024_compatibility` lint group.
Add a special case for `CStr`/`CString` in the `improper_ctypes` lint
Revives #120176. Just needed to bless a test and fix an argument, but seemed reasonable to me otherwise.
Instead of saying to "consider adding a `#[repr(C)]` or `#[repr(transparent)]` attribute to this struct", we now tell users to "Use `*const ffi::c_char` instead, and pass the value from `CStr::as_ptr()`" when the type involved is a `CStr` or a `CString`.
The suggestion is not made for `&mut CString` or `*mut CString`.
r? ``````@cjgillot`````` (since you were the reviewer of the original PR #120176, but feel free to reroll)
make writes_through_immutable_pointer a hard error
This turns the lint added in https://github.com/rust-lang/rust/pull/118324 into a hard error. This has been reported in cargo's future-compat reports since Rust 1.76 (released in February). Given that const_mut_refs is still unstable, it should be impossible to even hit this error on stable: we did accidentally stabilize some functions that can cause this error, but that got reverted in https://github.com/rust-lang/rust/pull/117905. Still, let's do a crater run just to be sure.
Given that this should only affect unstable code, I don't think it needs an FCP, but let's Cc ``@rust-lang/lang`` anyway -- any objection to making this unambiguous UB into a hard error during const-eval? This can be viewed as part of https://github.com/rust-lang/rust/pull/129195 which is already nominated for discussion.
Rollup of 9 pull requests
Successful merges:
- #128511 (Document WebAssembly target feature expectations)
- #129243 (do not build `cargo-miri` by default on stable channel)
- #129263 (Add a missing compatibility note in the 1.80.0 release notes)
- #129276 (Stabilize feature `char_indices_offset`)
- #129350 (adapt integer comparison tests for LLVM 20 IR changes)
- #129408 (Fix handling of macro arguments within the `dropping_copy_types` lint)
- #129426 (rustdoc-search: use tighter json for names and parents)
- #129437 (Fix typo in a help diagnostic)
- #129457 (kobzol vacation)
r? `@ghost`
`@rustbot` modify labels: rollup
Fix handling of macro arguments within the `dropping_copy_types` lint
This PR fixes the handling of spans with different context (aka macro arguments) than the primary expression within the different `{drop,forget}ing_copy_types` and `{drop,forget}ing_references` lints.
<details>
<summary>Before</summary>
```
warning: calls to `std::mem::drop` with a value that implements `Copy` does nothing
--> drop_writeln.rs:5:5
|
5 | drop(writeln!(&mut msg, "test"));
| ^^^^^--------------------------^
| |
| argument has type `Result<(), std::fmt::Error>`
|
= note: `#[warn(dropping_copy_types)]` on by default
help: use `let _ = ...` to ignore the expression or result
--> /home/[..]/.rustup/toolchains/nightly-x86_64-unknown-linux-gnu/lib/rustlib/src/rust/library/core/src/macros/mod.rs:688:9
|
68| let _ =
| ~~~~~~~
```
</details>
<details>
<summary>With this PR</summary>
```
warning: calls to `std::mem::drop` with a value that implements `Copy` does nothing
--> drop_writeln.rs:5:5
|
5 | drop(writeln!(&mut msg, "test"));
| ^^^^^--------------------------^
| |
| argument has type `Result<(), std::fmt::Error>`
|
= note: `#[warn(dropping_copy_types)]` on by default
help: use `let _ = ...` to ignore the expression or result
|
5 - drop(writeln!(&mut msg, "test"));
5 + let _ = writeln!(&mut msg, "test");
|
```
</details>
``````@rustbot`````` label +L-dropping_copy_types
Improve diagnostic-related lints: `untranslatable_diagnostic` & `diagnostic_outside_of_impl`
Summary:
- Made `untranslatable_diagnostic` point to problematic arguments instead of the function call
(I found this misleading while working on some `A-translation` PRs: my first impression was that
the methods themselves were not translation-aware and needed to be changed,
while in reality the problem was with the hardcoded strings passed as arguments).
- Made the shared pass of `untranslatable_diagnostic` & `diagnostic_outside_of_impl` more efficient.
`@rustbot` label D-imprecise-spans A-translation
Use `bool` in favor of `Option<()>` for diagnostics
We originally only supported `Option<()>` for optional notes/labels, but we now support `bool`. Let's use that, since it usually leads to more readable code.
I'm not removing the support from the derive macro, though I guess we could error on it... 🤔
Stabilize opaque type precise capturing (RFC 3617)
This PR partially stabilizes opaque type *precise capturing*, which was specified in [RFC 3617](https://github.com/rust-lang/rfcs/pull/3617), and whose syntax was amended by FCP in [#125836](https://github.com/rust-lang/rust/issues/125836).
This feature, as stabilized here, gives us a way to explicitly specify the generic lifetime parameters that an RPIT-like opaque type captures. This solves the problem of overcapturing, for lifetime parameters in these opaque types, and will allow the Lifetime Capture Rules 2024 ([RFC 3498](https://github.com/rust-lang/rfcs/pull/3498)) to be fully stabilized for RPIT in Rust 2024.
### What are we stabilizing?
This PR stabilizes the use of a `use<'a, T>` bound in return-position impl Trait opaque types. Such a bound fully specifies the set of generic parameters captured by the RPIT opaque type, entirely overriding the implicit default behavior. E.g.:
```rust
fn does_not_capture<'a, 'b>() -> impl Sized + use<'a> {}
// ~~~~~~~~~~~~~~~~~~~~
// This RPIT opaque type does not capture `'b`.
```
The way we would suggest thinking of `impl Trait` types *without* an explicit `use<..>` bound is that the `use<..>` bound has been *elided*, and that the bound is filled in automatically by the compiler according to the edition-specific capture rules.
All non-`'static` lifetime parameters, named (i.e. non-APIT) type parameters, and const parameters in scope are valid to name, including an elided lifetime if such a lifetime would also be valid in an outlives bound, e.g.:
```rust
fn elided(x: &u8) -> impl Sized + use<'_> { x }
```
Lifetimes must be listed before type and const parameters, but otherwise the ordering is not relevant to the `use<..>` bound. Captured parameters may not be duplicated. For now, only one `use<..>` bound may appear in a bounds list. It may appear anywhere within the bounds list.
### How does this differ from the RFC?
This stabilization differs from the RFC in one respect: the RFC originally specified `use<'a, T>` as syntactically part of the RPIT type itself, e.g.:
```rust
fn capture<'a>() -> impl use<'a> Sized {}
```
However, settling on the final syntax was left as an open question. T-lang later decided via FCP in [#125836](https://github.com/rust-lang/rust/issues/125836) to treat `use<..>` as a syntactic bound instead, e.g.:
```rust
fn capture<'a>() -> impl Sized + use<'a> {}
```
### What aren't we stabilizing?
The key goal of this PR is to stabilize the parts of *precise capturing* that are needed to enable the migration to Rust 2024.
There are some capabilities of *precise capturing* that the RFC specifies but that we're not stabilizing here, as these require further work on the type system. We hope to lift these limitations later.
The limitations that are part of this PR were specified in the [RFC's stabilization strategy](https://rust-lang.github.io/rfcs/3617-precise-capturing.html#stabilization-strategy).
#### Not capturing type or const parameters
The RFC addresses the overcapturing of type and const parameters; that is, it allows for them to not be captured in opaque types. We're not stabilizing that in this PR. Since all in scope generic type and const parameters are implicitly captured in all editions, this is not needed for the migration to Rust 2024.
For now, when using `use<..>`, all in scope type and const parameters must be nameable (i.e., APIT cannot be used) and included as arguments. For example, this is an error because `T` is in scope and not included as an argument:
```rust
fn test<T>() -> impl Sized + use<> {}
//~^ ERROR `impl Trait` must mention all type parameters in scope in `use<...>`
```
This is due to certain current limitations in the type system related to how generic parameters are represented as captured (i.e. bivariance) and how inference operates.
We hope to relax this in the future, and this stabilization is forward compatible with doing so.
#### Precise capturing for return-position impl Trait **in trait** (RPITIT)
The RFC specifies precise capturing for RPITIT. We're not stabilizing that in this PR. Since RPITIT already adheres to the Lifetime Capture Rules 2024, this isn't needed for the migration to Rust 2024.
The effect of this is that the anonymous associated types created by RPITITs must continue to capture all of the lifetime parameters in scope, e.g.:
```rust
trait Foo<'a> {
fn test() -> impl Sized + use<Self>;
//~^ ERROR `use<...>` precise capturing syntax is currently not allowed in return-position `impl Trait` in traits
}
```
To allow this involves a meaningful amount of type system work related to adding variance to GATs or reworking how generics are represented in RPITITs. We plan to do this work separately from the stabilization. See:
- https://github.com/rust-lang/rust/pull/124029
Supporting precise capturing for RPITIT will also require us to implement a new algorithm for detecting refining capture behavior. This may involve looking through type parameters to detect cases where the impl Trait type in an implementation captures fewer lifetimes than the corresponding RPITIT in the trait definition, e.g.:
```rust
trait Foo {
fn rpit() -> impl Sized + use<Self>;
}
impl<'a> Foo for &'a () {
// This is "refining" due to not capturing `'a` which
// is implied by the trait's `use<Self>`.
fn rpit() -> impl Sized + use<>;
// This is not "refining".
fn rpit() -> impl Sized + use<'a>;
}
```
This stabilization is forward compatible with adding support for this later.
### The technical details
This bound is purely syntactical and does not lower to a [`Clause`](https://doc.rust-lang.org/1.79.0/nightly-rustc/rustc_middle/ty/type.ClauseKind.html) in the type system. For the purposes of the type system (and for the types team's curiosity regarding this stabilization), we have no current need to represent this as a `ClauseKind`.
Since opaques already capture a variable set of lifetimes depending on edition and their syntactical position (e.g. RPIT vs RPITIT), a `use<..>` bound is just a way to explicitly rather than implicitly specify that set of lifetimes, and this only affects opaque type lowering from AST to HIR.
### FCP plan
While there's much discussion of the type system here, the feature in this PR is implemented internally as a transformation that happens before lowering to the type system layer. We already support impl Trait types partially capturing the in scope lifetimes; we just currently only expose that implicitly.
So, in my (errs's) view as a types team member, there's nothing for types to weigh in on here with respect to the implementation being stabilized, and I'd suggest a lang-only proposed FCP (though we'll of course CC the team below).
### Authorship and acknowledgments
This stabilization report was coauthored by compiler-errors and TC.
TC would like to acknowledge the outstanding and speedy work that compiler-errors has done to make this feature happen.
compiler-errors thanks TC for authoring the RFC, for all of his involvement in this feature's development, and pushing the Rust 2024 edition forward.
### Open items
We're doing some things in parallel here. In signaling the intention to stabilize, we want to uncover any latent issues so we can be sure they get addressed. We want to give the maximum time for discussion here to happen by starting it while other remaining miscellaneous work proceeds. That work includes:
- [x] Look into `syn` support.
- https://github.com/dtolnay/syn/issues/1677
- https://github.com/dtolnay/syn/pull/1707
- [x] Look into `rustfmt` support.
- https://github.com/rust-lang/rust/pull/126754
- [x] Look into `rust-analyzer` support.
- https://github.com/rust-lang/rust-analyzer/issues/17598
- https://github.com/rust-lang/rust-analyzer/pull/17676
- [x] Look into `rustdoc` support.
- https://github.com/rust-lang/rust/issues/127228
- https://github.com/rust-lang/rust/pull/127632
- https://github.com/rust-lang/rust/pull/127658
- [x] Suggest this feature to RfL (a known nightly user).
- [x] Add a chapter to the edition guide.
- https://github.com/rust-lang/edition-guide/pull/316
- [x] Update the Reference.
- https://github.com/rust-lang/reference/pull/1577
### (Selected) implementation history
* https://github.com/rust-lang/rfcs/pull/3498
* https://github.com/rust-lang/rfcs/pull/3617
* https://github.com/rust-lang/rust/pull/123468
* https://github.com/rust-lang/rust/issues/125836
* https://github.com/rust-lang/rust/pull/126049
* https://github.com/rust-lang/rust/pull/126753Closes#123432.
cc `@rust-lang/lang` `@rust-lang/types`
`@rustbot` labels +T-lang +I-lang-nominated +A-impl-trait +F-precise_capturing
Tracking:
- https://github.com/rust-lang/rust/issues/123432
----
For the compiler reviewer, I'll leave some inline comments about diagnostics fallout :^)
r? compiler
Use `impl PartialEq<TokenKind> for Token` more.
This lets us compare a `Token` with a `TokenKind`. It's used a lot, but can be used even more, avoiding the need for some `.kind` uses.
r? `@spastorino`
Shrink `TyKind::FnPtr`.
By splitting the `FnSig` within `TyKind::FnPtr` into `FnSigTys` and `FnHeader`, which can be packed more efficiently. This reduces the size of the hot `TyKind` type from 32 bytes to 24 bytes on 64-bit platforms. This reduces peak memory usage by a few percent on some benchmarks. It also reduces cache misses and page faults similarly, though this doesn't translate to clear cycles or wall-time improvements on CI.
r? `@compiler-errors`
Use more slice patterns inside the compiler
Nothing super noteworthy. Just replacing the common 'fragile' pattern of "length check followed by indexing or unwrap" with slice patterns for legibility and 'robustness'.
r? ghost
1. Decouple them.
2. Make logic around `diagnostic_outside_of_impl`'s early exits simpler.
3. Make `untranslatable_diagnostic` run one loop instead of two
and not allocate an intermediate vec.
4. Overall, reduce the amount of code executed
when the lints do not end up firing.
By splitting the `FnSig` within `TyKind::FnPtr` into `FnSigTys` and
`FnHeader`, which can be packed more efficiently. This reduces the size
of the hot `TyKind` type from 32 bytes to 24 bytes on 64-bit platforms.
This reduces peak memory usage by a few percent on some benchmarks. It
also reduces cache misses and page faults similarly, though this doesn't
translate to clear cycles or wall-time improvements on CI.
Rollup of 8 pull requests
Successful merges:
- #128221 (Add implied target features to target_feature attribute)
- #128261 (impl `Default` for collection iterators that don't already have it)
- #128353 (Change generate-copyright to generate HTML, with cargo dependencies included)
- #128679 (codegen: better centralize function declaration attribute computation)
- #128732 (make `import.vis` is immutable)
- #128755 (Integrate crlf directly into related test file instead via of .gitattributes)
- #128772 (rustc_codegen_ssa: Set architecture for object crate for 32-bit SPARC)
- #128782 (unused_parens: do not lint against parens around &raw)
r? `@ghost`
`@rustbot` modify labels: rollup
Instead of saying to "consider adding a `#[repr(C)]` or
`#[repr(transparent)]` attribute to this struct", we now tell users to
"Use `*const ffi::c_char` instead, and pass the value from
`CStr::as_ptr()`" when the type involved is a `CStr` or a `CString`.
Co-authored-by: Jieyou Xu <jieyouxu@outlook.com>
Rollup of 7 pull requests
Successful merges:
- #123813 (Add `REDUNDANT_IMPORTS` lint for new redundant import detection)
- #126697 ([RFC] mbe: consider the `_` in 2024 an expression)
- #127159 (match lowering: Hide `Candidate` from outside the lowering algorithm)
- #128244 (Peel off explicit (or implicit) deref before suggesting clone on move error in borrowck, remove some hacks)
- #128431 (Add myself as VxWorks target maintainer for reference)
- #128438 (Add special-case for [T, 0] in dropck_outlives)
- #128457 (Fix docs for OnceLock::get_mut_or_init)
r? `@ghost`
`@rustbot` modify labels: rollup