`rustc_span::symbol` defines some things that are re-exported from
`rustc_span`, such as `Symbol` and `sym`. But it doesn't re-export some
closely related things such as `Ident` and `kw`. So you can do `use
rustc_span::{Symbol, sym}` but you have to do `use
rustc_span::symbol::{Ident, kw}`, which is inconsistent for no good
reason.
This commit re-exports `Ident`, `kw`, and `MacroRulesNormalizedIdent`,
and changes many `rustc_span::symbol::` qualifiers in `compiler/` to
`rustc_span::`. This is a 200+ net line of code reduction, mostly
because many files with two `use rustc_span` items can be reduced to
one.
The maximum discriminator value LLVM can currently encode is 2^12. If macro use
results in more than 2^12 calls to the same function attributed to the same
callsite, and those calls are MIR-inlined, we will require more than the maximum
discriminator value to completely represent the debug information. Once we reach
that point drop the debug info instead.
The test relies on the fact that inlining more than 2^12 calls at the same
callsite will trigger a panic (and after the following commit, a warning) due to
LLVM limitations but with collapse_debuginfo the callsites should not be the
same.
the behavior of the type system not only depends on the current
assumptions, but also the currentnphase of the compiler. This is
mostly necessary as we need to decide whether and how to reveal
opaque types. We track this via the `TypingMode`.
CFI: Append debug location to CFI blocks
Currently we're not appending debug locations to the inserted CFI blocks. This shows up in #132615 and #100783. This change fixes that by passing down the debug location to the CFI type-test generation and appending it to the blocks.
Credits also belong to `@jakos-sec` who worked with me on this.
LLVM does not expect to ever see multiple dbg_declares for the same variable at the same
location with different values. proc-macros make it possible for arbitrary code,
including multiple calls that get inlined, to happen at any given location in the source
code. Add discriminators when that happens so these locations are different to LLVM.
This may interfere with the AddDiscriminators pass in LLVM, which is added by the
unstable flag -Zdebug-info-for-profiling.
Fixes#131944
- Don't rely on enum values defined by LLVM's C++ API
- Use safe wrapper functions instead of direct `unsafe` calls
- Consistently pass pointer/length strings instead of C strings
cg_llvm: Use a type-safe helper to cast `&str` and `&[u8]` to `*const c_char`
In `rustc_codegen_llvm` there are many uses of `.as_ptr().cast()` to convert a string or byte-slice to `*const c_char`, which then gets passed through FFI.
This works, but is fragile, because there's nothing constraining the pointer cast to actually be from `u8` to `c_char`. If the original value changes to something else that has an `as_ptr` method, or the context changes to expect something other than `c_char`, the cast will silently do the wrong thing.
By making the cast more explicit via a helper method, we can be sure that it will either perform the intended cast, or fail at compile time.
- removed extra bits from predicates queries that are no longer needed in the new system
- removed the need for `non_erasable_generics` to take in tcx and DefId, removed unused arguments in callers
llvm: replace some deprecated functions
`LLVMMDStringInContext` and `LLVMMDNodeInContext` are deprecated, replace them with `LLVMMDStringInContext2` and `LLVMMDNodeInContext2`.
Also replace `Value` with `Metadata` in some function signatures for better consistency.
Supertraits of `BuilderMethods` are all called `XyzBuilderMethods`.
Supertraits of `CodegenMethods` are all called `XyzMethods`. This commit
changes the latter to `XyzCodegenMethods`, for consistency.
Because constants are currently emitted *before* the prologue, leaving the
debug location on the IRBuilder spills onto other instructions in the prologue
and messes up both line numbers as well as the point LLVM chooses to be the
prologue end.
Example LLVM IR (irrelevant IR elided):
Before:
define internal { i64, i64 } @_ZN3tmp3Foo18var_return_opt_try17he02116165b0fc08cE(ptr align 8 %self) !dbg !347 {
start:
%self.dbg.spill = alloca [8 x i8], align 8
%_0 = alloca [16 x i8], align 8
%residual.dbg.spill = alloca [0 x i8], align 1
#dbg_declare(ptr %residual.dbg.spill, !353, !DIExpression(), !357)
store ptr %self, ptr %self.dbg.spill, align 8, !dbg !357
#dbg_declare(ptr %self.dbg.spill, !350, !DIExpression(), !358)
After:
define internal { i64, i64 } @_ZN3tmp3Foo18var_return_opt_try17h00b17d08874ddd90E(ptr align 8 %self) !dbg !347 {
start:
%self.dbg.spill = alloca [8 x i8], align 8
%_0 = alloca [16 x i8], align 8
%residual.dbg.spill = alloca [0 x i8], align 1
#dbg_declare(ptr %residual.dbg.spill, !353, !DIExpression(), !357)
store ptr %self, ptr %self.dbg.spill, align 8
#dbg_declare(ptr %self.dbg.spill, !350, !DIExpression(), !358)
Note in particular how !357 from %residual.dbg.spill's dbg_declare no longer
falls through onto the store to %self.dbg.spill. This fixes argument values
at entry when the constant is a ZST (e.g. <Option as Try>::Residual). This
fixes#130003 (but note that it does *not* fix issues with argument values and
non-ZST constants, which emit their own stores that have debug info on them,
like #128945).
Add `#[warn(unreachable_pub)]` to a bunch of compiler crates
By default `unreachable_pub` identifies things that need not be `pub` and tells you to make them `pub(crate)`. But sometimes those things don't need any kind of visibility. So they way I did these was to remove the visibility entirely for each thing the lint identifies, and then add `pub(crate)` back in everywhere the compiler said it was necessary. (Or occasionally `pub(super)` when context suggested that was appropriate.) Tedious, but results in more `pub` removal.
There are plenty more crates to do but this seems like enough for a first PR.
r? `@compiler-errors`
Avoid extra `cast()`s after `CStr::as_ptr()`
These used to be `&str` literals that did need a pointer cast, but that
became a no-op after switching to `c""` literals in #118566.
Special case DUMMY_SP to emit line 0/column 0 locations on DWARF platforms.
Line 0 has a special meaning in DWARF. From the version 5 spec:
The compiler may emit the value 0 in cases
where an instruction cannot be attributed to any
source line.
DUMMY_SP spans cannot be attributed to any line. However, because rustc internally stores line numbers starting at zero, lookup_debug_loc() adjusts every line number by one. Special casing DUMMY_SP to actually emit line 0 ensures rustc communicates to the debugger that there's no meaningful source code for this instruction, rather than telling the debugger to jump to line 1 randomly.