Like we have `add`/`sub` which are the `usize` version of `offset`, this adds the `usize` equivalent of `offset_from`. Like how `.add(d)` replaced a whole bunch of `.offset(d as isize)`, you can see from the changes here that it's fairly common that code actually knows the order between the pointers and *wants* a `usize`, not an `isize`.
As a bonus, this can do `sub nuw`+`udiv exact`, rather than `sub`+`sdiv exact`, which can be optimized slightly better because it doesn't have to worry about negatives. That's why the slice iterators weren't using `offset_from`, though I haven't updated that code in this PR because slices are so perf-critical that I'll do it as its own change.
This is an intrinsic, like `offset_from`, so that it can eventually be allowed in CTFE. It also allows checking the extra safety condition -- see the test confirming that CTFE catches it if you pass the pointers in the wrong order.
Cleanup `DebuggerVisualizerFile` type and other minor cleanup of queries.
Merge the queries for debugger visualizers into a single query.
Revert move of `resolve_path` to `rustc_builtin_macros`. Update dependencies in Cargo.toml for `rustc_passes`.
Respond to PR comments. Load visualizer files into opaque bytes `Vec<u8>`. Debugger visualizers for dynamically linked crates should not be embedded in the current crate.
Update the unstable book with the new feature. Add the tracking issue for the debugger_visualizer feature.
Respond to PR comments and minor cleanups.
Using an obviously-placeholder syntax. An RFC would still be needed before this could have any chance at stabilization, and it might be removed at any point.
But I'd really like to have it in nightly at least to ensure it works well with try_trait_v2, especially as we refactor the traits.
asm: Add a kreg0 register class on x86 which includes k0
Previously we only exposed a kreg register class which excludes the k0
register since it can't be used in many instructions. However k0 is a
valid register and we need to have a way of marking it as clobbered for
clobber_abi.
Fixes#94977
Previously we only exposed a kreg register class which excludes the k0
register since it can't be used in many instructions. However k0 is a
valid register and we need to have a way of marking it as clobbered for
clobber_abi.
Fixes#94977
implement SIMD gather/scatter via vector getelementptr
Fixes https://github.com/rust-lang/portable-simd/issues/271
However, I don't *really* know what I am doing here... Cc ``@workingjubilee`` ``@calebzulawski``
I didn't do anything for cranelift -- ``@bjorn3`` not sure if it's okay for that backend to temporarily break. I'm happy to cherry-pick a patch that adds cranelift support. :)
Create (unstable) 2024 edition
[On Zulip](https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/Deprecating.20macro.20scoping.20shenanigans/near/272860652), there was a small aside regarding creating the 2024 edition now as opposed to later. There was a reasonable amount of support and no stated opposition.
This change creates the 2024 edition in the compiler and creates a prelude for the 2024 edition. There is no current difference between the 2021 and 2024 editions. Cargo and other tools will need to be updated separately, as it's not in the same repository. This change permits the vast majority of work towards the next edition to proceed _now_ instead of waiting until 2024.
For sanity purposes, I've merged the "hello" UI tests into a single file with multiple revisions. Otherwise we'd end up with a file per edition, despite them being essentially identical.
````@rustbot```` label +T-lang +S-waiting-on-review
Not sure on the relevant team, to be honest.
* split `fuzzy_provenance_casts` into a ptr2int and a int2ptr lint
* feature gate both lints
* update documentation to be more realistic short term
* add tests for these lints
When encountering an unsatisfied trait bound, if there are no other
suggestions, mention all the types that *do* implement that trait:
```
error[E0277]: the trait bound `f32: Foo` is not satisfied
--> $DIR/impl_wf.rs:22:6
|
LL | impl Baz<f32> for f32 { }
| ^^^^^^^^ the trait `Foo` is not implemented for `f32`
|
= help: the following other types implement trait `Foo`:
Option<T>
i32
str
note: required by a bound in `Baz`
--> $DIR/impl_wf.rs:18:31
|
LL | trait Baz<U: ?Sized> where U: Foo { }
| ^^^ required by this bound in `Baz`
```
Mention implementers of traits in `ImplObligation`s.
Do not mention other `impl`s for closures, ranges and `?`.
Spellchecking compiler comments
This PR cleans up the rest of the spelling mistakes in the compiler comments. This PR does not change any literal or code spelling issues.
async: Give predictable name to binding generated from .await expressions.
This name makes it to debuginfo and allows debuggers to identify such bindings and their captured versions in suspended async fns.
This will be useful for async stack traces, as discussed in https://internals.rust-lang.org/t/async-debugging-logical-stack-traces-setting-goals-collecting-examples/15547.
I don't know if this needs some discussion by ````@rust-lang/compiler,```` e.g. about the name of the binding (`__awaitee`) or about the fact that this PR introduces a (soft) guarantee about a compiler generated name. Although, regarding the later, I think the same reasoning applies here as it does for debuginfo in general.
r? ````@tmandry````
Add the generic_associated_types_extended feature
Right now, this only ignore obligations that reference new placeholders in `poly_project_and_unify_type`. In the future, this might do other things, like allowing object-safe GATs.
**This feature is *incomplete* and quite likely unsound. This is mostly just for testing out potential future APIs using a "relaxed" set of rules until we figure out *proper* rules.**
Also drive by cleanup of adding a `ProjectAndUnifyResult` enum instead of using a `Result<Result<Option>>`.
r? `@nikomatsakis`
[1/2] Implement macro meta-variable expressions
See https://github.com/rust-lang/rust/pull/93545#issuecomment-1050963295
The logic behind `length`, `index` and `count` was removed but the parsing code is still present, i.e., everything is simply ignored like `ignored`.
r? ``@petrochenkov``
Treat unstable lints as unknown
This change causes unstable lints to be ignored if the `unknown_lints`
lint is allowed. To achieve this, it also changes lints to apply as soon
as they are processed. Previously, lints in the same set were processed
as a batch and then all simultaneously applied.
Implementation of https://github.com/rust-lang/compiler-team/issues/469
Merge `#[deprecated]` and `#[rustc_deprecated]`
The first commit makes "reason" an alias for "note" in `#[rustc_deprecated]`, while still prohibiting it in `#[deprecated]`.
The second commit changes "suggestion" to not just be a feature of `#[rustc_deprecated]`. This is placed behind the new `deprecated_suggestion` feature. This needs a tracking issue; let me know if this PR will be approved and I can create one.
The third commit is what permits `#[deprecated]` to be used when `#![feature(staged_api)]` is enabled. This isn't yet used in stdlib (only tests), as it would require duplicating all deprecation attributes until a bootstrap occurs. I intend to submit a follow-up PR that replaces all uses and removes the remaining `#[rustc_deprecated]` code after the next bootstrap.
`@rustbot` label +T-libs-api +C-feature-request +A-attributes +S-waiting-on-review
This change causes unstable lints to be ignored if the `unknown_lints`
lint is allowed. To achieve this, it also changes lints to apply as soon
as they are processed. Previously, lints in the same set were processed
as a batch and then all simultaneously applied.
Implementation of https://github.com/rust-lang/compiler-team/issues/469
Add well known values to `--check-cfg` implementation
This pull-request adds well known values for the well known names via `--check-cfg=values()`.
[RFC 3013: Checking conditional compilation at compile time](https://rust-lang.github.io/rfcs/3013-conditional-compilation-checking.html#checking-conditional-compilation-at-compile-time) doesn't define this at all, but this seems a nice improvement.
The activation is done by a empty `values()` (new syntax) similar to `names()` except that `names(foo)` also activate well known names while `values(aa, "aa", "kk")` would not.
As stated this use a different activation logic because well known values for the well known names are not always sufficient.
In fact this is problematic for every `target_*` cfg because of non builtin targets, as the current implementation use those built-ins targets to create the list the well known values.
The implementation is straight forward, first we gather (if necessary) all the values (lazily or not) and then we apply them.
r? ```@petrochenkov```
The previous approach of checking for the reserve-r9 target feature
didn't actually work because LLVM only sets this feature very late when
initializing the per-function subtarget.
Add MemTagSanitizer Support
Add support for the LLVM [MemTagSanitizer](https://llvm.org/docs/MemTagSanitizer.html).
On hardware which supports it (see caveats below), the MemTagSanitizer can catch bugs similar to AddressSanitizer and HardwareAddressSanitizer, but with lower overhead.
On a tag mismatch, a SIGSEGV is signaled with code SEGV_MTESERR / SEGV_MTEAERR.
# Usage
`-Zsanitizer=memtag -C target-feature="+mte"`
# Comments/Caveats
* MemTagSanitizer is only supported on AArch64 targets with hardware support
* Requires `-C target-feature="+mte"`
* LLVM MemTagSanitizer currently only performs stack tagging.
# TODO
* Tests
* Example
This thus still makes it technically possible to enable the feature, and thus
to trigger UB without `unsafe`, but this is fine since incomplete features are
known to be potentially unsound (labelled "may not be safe").
This follows from the discussion at https://github.com/rust-lang/rust/pull/93176#discussion_r799413561
Fix invalid special casing of the unreachable! macro
This pull-request fix an invalid special casing of the `unreachable!` macro in the same way the `panic!` macro was solved, by adding two new internal only macros `unreachable_2015` and `unreachable_2021` edition dependent and turn `unreachable!` into a built-in macro that do dispatching. This logic is stolen from the `panic!` macro.
~~This pull-request also adds an internal feature `format_args_capture_non_literal` that allows capturing arguments from formatted string that expanded from macros. The original RFC #2795 mentioned this as a future possibility. This feature is [required](https://github.com/rust-lang/rust/issues/92137#issuecomment-1018630522) because of concatenation that needs to be done inside the macro:~~
```rust
$crate::concat!("internal error: entered unreachable code: ", $fmt)
```
**In summary** the new behavior for the `unreachable!` macro with this pr is:
Edition 2021:
```rust
let x = 5;
unreachable!("x is {x}");
```
```
internal error: entered unreachable code: x is 5
```
Edition <= 2018:
```rust
let x = 5;
unreachable!("x is {x}");
```
```
internal error: entered unreachable code: x is {x}
```
Also note that the change in this PR are **insta-stable** and **breaking changes** but this a considered as being a [bug](https://github.com/rust-lang/rust/issues/92137#issuecomment-998441613).
If someone could start a perf run and then a crater run this would be appreciated.
Fixes https://github.com/rust-lang/rust/issues/92137