Beforehand, it was unclear whether rust was performing the "recommended set" of
optimizations provided by LLVM for code. This commit changes the way we run
passes to closely mirror that of clang, which in theory does it correctly. The
notable changes include:
* Passes are no longer explicitly added one by one. This would be difficult to
keep up with as LLVM changes and we don't guaranteed always know the best
order in which to run passes
* Passes are now managed by LLVM's PassManagerBuilder object. This is then used
to populate the various pass managers run.
* We now run both a FunctionPassManager and a module-wide PassManager. This is
what clang does, and I presume that we *may* see a speed boost from the
module-wide passes just having to do less work. I have no measured this.
* The codegen pass manager has been extracted to its own separate pass manager
to not get mixed up with the other passes
* All pass managers now include passes for target-specific data layout and
analysis passes
Some new features include:
* You can now print all passes being run with `-Z print-llvm-passes`
* When specifying passes via `--passes`, the passes are now appended to the
default list of passes instead of overwriting them.
* The output of `--passes list` is now generated by LLVM instead of maintaining
a list of passes ourselves
* Loop vectorization is turned on by default as an optimization pass and can be
disabled with `-Z no-vectorize-loops`
* LLVM now has a C interface to LLVMBuildAtomicRMW
* The exception handling support for the JIT seems to have been dropped
* Various interfaces have been added or headers have changed
This un-reverts the reverts of the rusti commits made awhile back. These were reverted for an LLVM failure in rustpkg. I believe that this is not a problem with these commits, but rather that rustc is being used in parallel for rustpkg tests (in-process). This is not working yet (almost! see #7011), so I serialized all the tests to run one after another.
@brson, I'm mainly just guessing as to the cause of the LLVM failures in rustpkg tests. I'm confident that running tests in parallel is more likely to be the problem than those commits I made.
Additionally, this fixes two recently reported issues with rusti.
Refactor the optimization passes to explicitly use the passes. This commit
just re-implements the same passes as were already being run.
It also adds an option (behind `-Z`) to run the LLVM lint pass on the
unoptimized IR.