Fix ICE when `main` is declared in an `extern` block
Changes in #84401 to implement `imported_main` changed how the crate entry point is found, and a declared `main` in an `extern` block was detected erroneously. This was causing the ICE described in #86110.
This PR adds a check for this case and emits an error instead. Previously a `main` declaration in an `extern` block was not detected as an entry point at all, so emitting an error shouldn't break anything that worked previously. In 1.52.1 stable this is demonstrated, with a `` `main` function not found`` error.
Fixes#86110
Remove unused dependencies from compiler crates
Various compiler crates have dependencies that they don't appear to use. I used some scripting to detect such dependencies, filtered them based on some manual review, and removed those that do indeed appear to be entirely unused.
Introduce -Zprofile-closures to evaluate the impact of 2229
This creates a CSV with name "closure_profile_XXXXX.csv", where the
variable part is the process id of the compiler.
To profile a cargo project you can run one of the following depending on
if you're compiling a library or a binary:
```
cargo +nightly rustc --lib -- -Zprofile-closures
cargo +nightly rustc --bin {binary_name} -- -Zprofile-closures
```
r? `@nikomatsakis`
Change vtable memory representation to use tcx allocated allocations.
This fixes https://github.com/rust-lang/rust/issues/86324. However i suspect there's more to change before it can land.
r? `@bjorn3`
cc `@rust-lang/miri`
Turn non_fmt_panic into a future_incompatible edition lint.
This turns the `non_fmt_panic` lint into a future_incompatible edition lint, so it becomes part of the `rust_2021_compatibility` group. See https://github.com/rust-lang/rust/issues/85894.
This lint produces both warnings about semantical changes (e.g. `panic!("{{")`) and things that will become hard errors (e.g. `panic!("{")`). So I added a `explain_reason: false` that supresses the default "this will become a hard error" or "the semantics will change" message, and instead added a note depending on the situation. (cc `@rylev)`
r? `@nikomatsakis`
This creates a CSV with name "closure_profile_XXXXX.csv", where the
variable part is the process id of the compiler.
To profile a cargo project you can run one of the following depending on
if you're compiling a library or a binary:
```
cargo +stage1 rustc --lib -- -Zprofile-closures
cargo +stage1 rustc --bin -- -Zprofile-closures
```
Use HTTPS links where possible
While looking at #86583, I wondered how many other (insecure) HTTP links were in `rustc`. This changes most other `http` links to `https`. While most of the links are in comments or documentation, there are a few other HTTP links that are used by CI that are changed to HTTPS.
Notes:
- I didn't change any to or in licences
- Some links don't support HTTPS :(
- Some `http` links were dead, in those cases I upgraded them to their new places (all of which used HTTPS)
Disambiguate between SourceFiles from different crates even if they have the same path
This PR fixes an ICE that can occur when the compiler encounters a source file that is part of both the local crate and an upstream crate:
1. While importing source files from an upstream crate the compiler creates a `SourceFile` entry for `foo.rs` in the `SourceMap`. Since this is an imported source file its `src` field is `None`.
2. At a later point the parser encounters `foo.rs` again. It tells the `SourceMap` to load the file but because we already have an entry for `foo.rs` the `SourceMap` will return the existing version with `src == None`.
3. The parser proceeds under the assumption that `src.is_some()` and panics when actually trying to use the file's contents.
This PR fixes the issue by adding the source file's associated `CrateNum` to the `SourceMap`'s interning key. As a consequence the two instances of the file will each have a separate entry in the `SourceMap`. They just happen to share the same file path. This approach seemed less problematic to me than trying to mutate the `SourceFile` after it had already been created.
Another, more involved, approach might be to merge the `src` and the `external_src` field.
Fixes#85955
Fix `unused_unsafe` around `await`
Enables `unused_unsafe` lint for `unsafe { future.await }`.
The existing test for this is `unsafe { println!() }`, so I assume that `println!` used to contain compiler-generated unsafe but this is no longer true, and so the existing test is broken. I replaced the test with `unsafe { ...await }`. I believe `await` is currently the only instance of compiler-generated unsafe.
Reverts some parts of #85421, but the issue predates that PR.
make UB during CTFE a hard error
This is a next step for https://github.com/rust-lang/rust/issues/71800. `const_err` has been a future-incompatibility lint for 4 months now since https://github.com/rust-lang/rust/pull/80394 (and err-by-default for many years before that), so I think we could try making it a proper hard error at least in some situations.
I didn't yet adjust the tests, since I first want to gauge the fall-out via crater.
Cc `@rust-lang/wg-const-eval`
Remove some last remants of {push,pop}_unsafe!
These macros have already been removed, but there was still some code handling these macros. That code is now removed.
Use better error message for hard errors in CTFE
I noticed this while working on #86255: currently the same message is used for hard errors and soft errors in CTFE. This changes the error messages to make hard errors use a message that indicates the reality of the situation correctly, since usage of the constant is never allowed when there was a hard error evaluating it. This doesn't affect the behaviour of these error messages, only the content.
This changes the error logic to check if the error should be hard or soft where it is generated, instead of where it is emitted, to allow this distinction in error messages.
Box `thir::ExprKind::Adt` for performance
`Adt` is the biggest variant in the enum and probably isn't used very often compared to the other expr kinds, so boxing it should be beneficial for performance. We need a perf test to be sure.
Refactor vtable codegen
This refactor the codegen of vtables of miri interpreter, llvm, cranelift codegen backends.
This is preparation for the implementation of trait upcasting feature. cc #65991
Note that aside from code reorganization, there's an internal behavior change here that now InstanceDef::Virtual's index now include the three metadata slots, and now the first method is with index 3.
cc `@RalfJung` `@bjorn3`
Fix ICEs on invalid vtable size/alignment const UB errors
The invalid vtable size/alignment errors from `InterpCx::read_size_and_align_from_vtable` were "freeform const UB errors", causing ICEs when reaching validation. This PR turns them into const UB hard errors to catch them during validation and avoid that.
Fixes#86193
r? `@RalfJung`
(It seemed cleaner to have 2 variants but they can be merged into one variant with a message payload if you prefer that ?)
Hash DefId in rustc_span.
This is mostly just moving code around. Changes are simplifications of unneeded callbacks from rustc_span to rustc_middle.
r? `@petrochenkov`
Make `relate_type_and_mut` public
#85343 improved diagnostics around `Relate` impls but made `relate_type_and_mut` private, which was accessible as `relate` previously. This makes it public so that we can use it on rust-semverver.
r? ```@Aaron1011```
Fix some diagnostic issues with const_generics_defaults feature gate
This PR makes a few changes:
- print out const param defaults in "lifetime ordering" errors rather than discarding them
- update `is_simple_text` to account for const params when checking if a type has no generics, this was causing a note to be failed to add to an error message
- fixes some diagnostic wording that incorrectly said there was ordering restrictions between type/const params despite the `const_generics_defaults` feature gate is active
Fix ICE during type layout when there's a `[type error]`
Fixes#84108.
Based on estebank's [comment], except I used `delay_span_bug` because it
should work in more cases, and I think it expresses its intent more
clearly.
r? `@estebank`
[comment]: https://github.com/rust-lang/rust/issues/84108#issuecomment-818916848
Partial support for raw-dylib linkage
First cut of functionality for issue #58713: add support for `#[link(kind = "raw-dylib")]` on `extern` blocks in lib crates compiled to .rlib files. Does not yet support `#[link_name]` attributes on functions, or the `#[link_ordinal]` attribute, or `#[link(kind = "raw-dylib")]` on `extern` blocks in bin crates; I intend to publish subsequent PRs to fill those gaps. It's also not yet clear whether this works for functions in `extern "stdcall"` blocks; I also intend to investigate that shortly and make any necessary changes as a follow-on PR.
This implementation calls out to an LLVM function to construct the actual `.idata` sections as temporary `.lib` files on disk and then links those into the generated .rlib.
Allow raw pointers in SIMD types
Closes#85915 by loosening the strictness in typechecking and adding a test to guarantee it passes.
This still might be too strict, as references currently do pass monomorphization, but my understanding is that they are not guaranteed to be "scalar" in the same way.
This does not yet support #[link_name] attributes on functions, the #[link_ordinal]
attribute, #[link(kind = "raw-dylib")] on extern blocks in bin crates, or
stdcall functions on 32-bit x86.
Since PR #69251, the `#[track_caller]` attribute has been supported on
traits. However, it only has an effect on direct (monomorphized) method
calls. Calling a `#[track_caller]` method on a trait object will *not*
propagate caller location information - instead, `Location::caller()` will
return the location of the method definition.
This PR forwards caller location information when `#[track_caller]` is
present on the method definition in the trait. This is possible because
`#[track_caller]` in this position is 'inherited' by any impls of that
trait, so all implementations will have the same ABI.
This PR does *not* change the behavior in the case where
`#[track_caller]` is present only on the impl of a trait.
While all implementations of the method might have an explicit
`#[track_caller]`, we cannot know this at codegen time, since other
crates may have impls of the trait. Therefore, we keep the current
behavior of not forwarding the caller location, ensuring that all
implementations of the trait will have the correct ABI.
See the modified test for examples of how this works
Support for force-warns
Implements https://github.com/rust-lang/rust/issues/85512.
This PR adds a new command line option `force-warns` which will force the provided lints to warn even if they are allowed by some other mechanism such as `#![allow(warnings)]`.
Some remaining issues:
* https://github.com/rust-lang/rust/issues/85512 mentions that `force-warns` should also be capable of taking lint groups instead of individual lints. This is not implemented.
* If a lint has a higher warning level than `warn`, this will cause that lint to warn instead. We probably want to allow the lint to error if it is set to a higher lint and is not allowed somewhere else.
* One test is currently ignored because it's not working - when a deny-by-default lint is allowed, it does not currently warn under `force-warns`. I'm not sure why, but I wanted to get this in before the weekend.
r? `@nikomatsakis`
Remove unused feature gates
The first commit removes a usage of a feature gate, but I don't expect it to be controversial as the feature gate was only used to workaround a limitation of rust in the past. (closures never being `Clone`)
The second commit uses `#[allow_internal_unstable]` to avoid leaking the `trusted_step` feature gate usage from inside the index newtype macro. It didn't work for the `min_specialization` feature gate though.
The third commit removes (almost) all feature gates from the compiler that weren't used anyway.
Reduce the amount of untracked state in TyCtxt
Access to untracked global state may generate instances of #84970.
The GlobalCtxt contains the lowered HIR, the resolver outputs and interners.
By wrapping the resolver inside a query, we make sure those accesses are properly tracked.
As a no_hash query, all dependent queries essentially become `eval_always`,
what they should have been from the beginning.
Emit a hard error when a panic occurs during const-eval
Previous, a panic during const evaluation would go through the
`const_err` lint. This PR ensures that such a panic always causes
compilation to fail.
Make `Step` trait safe to implement
This PR makes a few modifications to the `Step` trait that I believe better position it for stabilization in the short term. In particular,
1. `unsafe trait TrustedStep` is introduced, indicating that the implementation of `Step` for a given type upholds all stated invariants (which have remained unchanged). This is gated behind a new `trusted_step` feature, as stabilization is realistically blocked on min_specialization.
2. The `Step` trait is internally specialized on the `TrustedStep` trait, which avoids a serious performance regression.
3. `TrustedLen` is implemented for `T: TrustedStep` as the latter's invariants subsume the former's.
4. The `Step` trait is no longer `unsafe`, as the invariants must not be relied upon by unsafe code (unless the type implements `TrustedStep`).
5. `TrustedStep` is implemented for all types that implement `Step` in the standard library and compiler.
6. The `step_trait_ext` feature is merged into the `step_trait` feature. I was unable to find any reasoning for the features being split; the `_unchecked` methods need not necessarily be stabilized at the same time, but I think it is useful to have them under the same feature flag.
All existing implementations of `Step` will be broken, as it is not possible to `unsafe impl` a safe trait. Given this trait only exists on nightly, I feel this breakage is acceptable. The blanket `impl<T: Step> TrustedLen for T` will likely cause some minor breakage, but this should be covered by the equivalent impl for `TrustedStep`.
Hopefully these changes are sufficient to place `Step` in decent position for stabilization, which would allow user-defined types to be used with `a..b` syntax.
const-eval: disallow unwinding across functions that `!fn_can_unwind()`
Following https://github.com/rust-lang/miri/pull/1776#discussion_r633074343, so r? `@RalfJung`
This PR turns `unwind` in `StackPopCleanup::Goto` into a new enum `StackPopUnwind`, with a `NotAllowed` variant to indicate that unwinding is not allowed. This variant is chosen based on `rustc_middle::ty::layout::fn_can_unwind()` in `eval_fn_call()` when pushing the frame. A check is added in `unwind_to_block()` to report UB if unwinding happens across a `StackPopUnwind::NotAllowed` frame.
Tested with Miri `HEAD` with [minor changes](https://github.com/rust-lang/miri/compare/HEAD..9cf3c7f0d86325a586fbcbf2acdc9232b861f1d8) and the rust-lang/miri#1776 branch with [these changes](d866c1c52f..626638fbfe).
Post-monomorphization errors traces MVP
This PR works towards better diagnostics for the errors encountered in #85155 and similar.
We can encounter post-monomorphization errors (PMEs) when collecting mono items. The current diagnostics are confusing for these cases when they happen in a dependency (but are acceptable when they happen in the local crate).
These kinds of errors will be more likely now that `stdarch` uses const generics for its intrinsics' immediate arguments, and validates these const arguments with a mechanism that triggers such PMEs.
(Not to mention that the errors happen during codegen, so only when building code that actually uses these code paths. Check builds don't trigger them, neither does unused code)
So in this PR, we detect these kinds of errors during the mono item graph walk: if any error happens while collecting a node or its neighbors, we print a diagnostic about the current collection step, so that the user has at least some context of which erroneous code and dependency triggered the error.
The diagnostics for issue #85155 now have this note showing the source of the erroneous const argument:
```
note: the above error was encountered while instantiating `fn std::arch::x86_64::_mm_blend_ps::<51_i32>`
--> issue-85155.rs:11:24
|
11 | let _blended = _mm_blend_ps(a, b, 0x33);
| ^^^^^^^^^^^^^^^^^^^^^^^^
error: aborting due to previous error
```
Note that #85155 is a reduced version of a case happening in the wild, to indirect users of the `rustfft` crate, as seen in https://github.com/ejmahler/RustFFT/issues/74. The crate had a few of these out-of-range immediates. Here's how the diagnostics in this PR would have looked on one of its examples before it was fixed:
<details>
```
error[E0080]: evaluation of constant value failed
--> ./stdarch/crates/core_arch/src/macros.rs:8:9
|
8 | assert!(IMM >= MIN && IMM <= MAX, "IMM value not in expected range");
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ the evaluated program panicked at 'IMM value not in expected range', ./stdarch/crates/core_arch/src/macros.rs:8:9
|
= note: this error originates in the macro `$crate::panic::panic_2015` (in Nightly builds, run with -Z macro-backtrace for more info)
note: the above error was encountered while instantiating `fn _mm_blend_ps::<51_i32>`
--> /tmp/RustFFT/src/avx/avx_vector.rs:1314:23
|
1314 | let blended = _mm_blend_ps(rows[0], rows[2], 0x33);
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
note: the above error was encountered while instantiating `fn _mm_permute_pd::<5_i32>`
--> /tmp/RustFFT/src/avx/avx_vector.rs:1859:9
|
1859 | _mm_permute_pd(self, 0x05)
| ^^^^^^^^^^^^^^^^^^^^^^^^^^
note: the above error was encountered while instantiating `fn _mm_permute_pd::<15_i32>`
--> /tmp/RustFFT/src/avx/avx_vector.rs:1863:32
|
1863 | (_mm_movedup_pd(self), _mm_permute_pd(self, 0x0F))
| ^^^^^^^^^^^^^^^^^^^^^^^^^^
error: aborting due to previous error
For more information about this error, try `rustc --explain E0080`.
error: could not compile `rustfft`
To learn more, run the command again with --verbose.
```
</details>
I've developed and discussed this with them, so maybe r? `@oli-obk` -- but feel free to redirect to someone else of course.
(I'm not sure we can say that this PR definitely closes issue 85155, as it's still unclear exactly which diagnostics and information would be interesting to report in such cases -- and we've discussed printing backtraces before. I have prototypes of some complete and therefore noisy backtraces I showed Oli, but we decided to not include them in this PR for now)
Emit a diagnostic when the monomorphized item collector
encounters errors during a step of the recursive item collection.
These post-monomorphization errors otherwise only show the
erroneous expression without a trace, making them very obscure
and hard to pinpoint whenever they happen in dependencies.
Bump bootstrap compiler to beta 1.53.0
This PR bumps the bootstrap compiler to version 1.53.0 beta, as part of our usual release process (this was supposed to be Wednesday's step, but creating the beta release took longer than expected).
The PR also includes the "Bootstrap: skip rustdoc fingerprint for building docs" commit, see the reasoning [on Zulip](https://zulip-archive.rust-lang.org/241545trelease/88450153betabootstrap.html).
r? `@Mark-Simulacrum`
Make building THIR a stealable query
This PR creates a stealable `thir_body` query so that we can build the THIR only once for THIR unsafeck and MIR build.
Blocked on #83842.
r? `@nikomatsakis`
CTFE core engine allocation & memory API improvemenets
This is a first step towards https://github.com/rust-lang/miri/issues/841.
- make `Allocation` API offset-based (no more making up `Pointer`s just to access an `Allocation`)
- make `Memory` API higher-level (combine checking for access and getting access into one operation)
The Miri-side PR is at https://github.com/rust-lang/miri/pull/1804.
r? `@oli-obk`
- make Allocation API offset-based (no more Pointer)
- make Memory API higher-level (combine checking for access and getting access into one operation)
Rollup of 7 pull requests
Successful merges:
- #84587 (rustdoc: Make "rust code block is empty" and "could not parse code block" warnings a lint (`INVALID_RUST_CODEBLOCKS`))
- #85280 (Toggle-wrap items differently than top-doc.)
- #85338 (Implement more Iterator methods on core::iter::Repeat)
- #85339 (Report an error if a lang item has the wrong number of generic arguments)
- #85369 (Suggest borrowing if a trait implementation is found for &/&mut <type>)
- #85393 (Suppress spurious errors inside `async fn`)
- #85415 (Clean up remnants of BorrowOfPackedField)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Unify Regions with RegionVids in UnificationTable
A few test output changes; might be able to revert those but figured I would open this for perf and comments.
r? `@nikomatsakis`
Remove CrateNum parameter for queries that only work on local crate
The pervasive `CrateNum` parameter is a remnant of the multi-crate rustc idea.
Using `()` as query key in those cases avoids having to worry about the validity of the query key.
coverage bug fixes and some refactoring
This replaces the relevant commits (2 and 3) from PR #85082, and also corrects an error querying for coverageinfo.
1. `coverageinfo` query needs to use the same MIR as codegen
I ran into an error trying to fix dead block coverage and realized the
`coverageinfo` query is getting a different MIR compared to the
codegenned MIR, which can sometimes be a problem during mapgen.
I changed that query to use the `InstandeDef` (which includes the
generic parameter substitutions, prosibly specific to const params)
instead of the `DefId` (without unknown/default const substitutions).
2. Simplified body_span and filtered span code
Some code cleanup extracted from future (but unfinished) commit to fix
coverage in attr macro functions.
3. Spanview needs the relevant body_span used for coverage
The coverage body_span doesn't always match the function body_span.
r? ```@tmandry```
Introduce the beginning of a THIR unsafety checker
This poses the foundations for the THIR unsafety checker, so that it can be implemented incrementally:
- implements a rudimentary `Visitor` for the THIR (which will definitely need some tweaking in the future)
- introduces a new `-Zthir-unsafeck` flag which tells the compiler to use THIR unsafeck instead of MIR unsafeck
- implements detection of unsafe functions
- adds revisions to the UI tests to test THIR unsafeck alongside MIR unsafeck
This uses a very simple query design, where bodies are unsafety-checked on a body per body basis. This however has some big flaws:
- the unsafety-checker builds the THIR itself, which means a lot of work is duplicated with MIR building constructing its own copy of the THIR
- unsafety-checking closures is currently completely wrong: closures should take into account the "safety context" in which they are created, here we are considering that closures are always a safe context
I had intended to fix these problems in follow-up PRs since they are always gated under the `-Zthir-unsafeck` flag (which is explicitely noted to be unsound).
r? `@nikomatsakis`
cc https://github.com/rust-lang/project-thir-unsafeck/issues/3https://github.com/rust-lang/project-thir-unsafeck/issues/7
I ran into an error trying to fix dead block coverage and realized the
`coverageinfo` query is getting a different MIR compared to the
codegenned MIR, which can sometimes be a problem during mapgen.
I changed that query to use the `InstandeDef` (which includes the
generic parameter substitutions, prosibly specific to const params)
instead of the `DefId` (without unknown/default const substitutions).
Fix `--remap-path-prefix` not correctly remapping `rust-src` component paths and unify handling of path mapping with virtualized paths
This PR fixes#73167 ("Binaries end up containing path to the rust-src component despite `--remap-path-prefix`") by preventing real local filesystem paths from reaching compilation output if the path is supposed to be remapped.
`RealFileName::Named` introduced in #72767 is now renamed as `LocalPath`, because this variant wraps a (most likely) valid local filesystem path.
`RealFileName::Devirtualized` is renamed as `Remapped` to be used for remapped path from a real path via `--remap-path-prefix` argument, as well as real path inferred from a virtualized (during compiler bootstrapping) `/rustc/...` path. The `local_path` field is now an `Option<PathBuf>`, as it will be set to `None` before serialisation, so it never reaches any build output. Attempting to serialise a non-`None` `local_path` will cause an assertion faliure.
When a path is remapped, a `RealFileName::Remapped` variant is created. The original path is preserved in `local_path` field and the remapped path is saved in `virtual_name` field. Previously, the `local_path` is directly modified which goes against its purpose of "suitable for reading from the file system on the local host".
`rustc_span::SourceFile`'s fields `unmapped_path` (introduced by #44940) and `name_was_remapped` (introduced by #41508 when `--remap-path-prefix` feature originally added) are removed, as these two pieces of information can be inferred from the `name` field: if it's anything other than a `FileName::Real(_)`, or if it is a `FileName::Real(RealFileName::LocalPath(_))`, then clearly `name_was_remapped` would've been false and `unmapped_path` would've been `None`. If it is a `FileName::Real(RealFileName::Remapped{local_path, virtual_name})`, then `name_was_remapped` would've been true and `unmapped_path` would've been `Some(local_path)`.
cc `@eddyb` who implemented `/rustc/...` path devirtualisation
This PR implements span quoting, allowing proc-macros to produce spans
pointing *into their own crate*. This is used by the unstable
`proc_macro::quote!` macro, allowing us to get error messages like this:
```
error[E0412]: cannot find type `MissingType` in this scope
--> $DIR/auxiliary/span-from-proc-macro.rs:37:20
|
LL | pub fn error_from_attribute(_args: TokenStream, _input: TokenStream) -> TokenStream {
| ----------------------------------------------------------------------------------- in this expansion of procedural macro `#[error_from_attribute]`
...
LL | field: MissingType
| ^^^^^^^^^^^ not found in this scope
|
::: $DIR/span-from-proc-macro.rs:8:1
|
LL | #[error_from_attribute]
| ----------------------- in this macro invocation
```
Here, `MissingType` occurs inside the implementation of the proc-macro
`#[error_from_attribute]`. Previosuly, this would always result in a
span pointing at `#[error_from_attribute]`
This will make many proc-macro-related error message much more useful -
when a proc-macro generates code containing an error, users will get an
error message pointing directly at that code (within the macro
definition), instead of always getting a span pointing at the macro
invocation site.
This is implemented as follows:
* When a proc-macro crate is being *compiled*, it causes the `quote!`
macro to get run. This saves all of the sapns in the input to `quote!`
into the metadata of *the proc-macro-crate* (which we are currently
compiling). The `quote!` macro then expands to a call to
`proc_macro::Span::recover_proc_macro_span(id)`, where `id` is an
opaque identifier for the span in the crate metadata.
* When the same proc-macro crate is *run* (e.g. it is loaded from disk
and invoked by some consumer crate), the call to
`proc_macro::Span::recover_proc_macro_span` causes us to load the span
from the proc-macro crate's metadata. The proc-macro then produces a
`TokenStream` containing a `Span` pointing into the proc-macro crate
itself.
The recursive nature of 'quote!' can be difficult to understand at
first. The file `src/test/ui/proc-macro/quote-debug.stdout` shows
the output of the `quote!` macro, which should make this eaier to
understand.
This PR also supports custom quoting spans in custom quote macros (e.g.
the `quote` crate). All span quoting goes through the
`proc_macro::quote_span` method, which can be called by a custom quote
macro to perform span quoting. An example of this usage is provided in
`src/test/ui/proc-macro/auxiliary/custom-quote.rs`
Custom quoting currently has a few limitations:
In order to quote a span, we need to generate a call to
`proc_macro::Span::recover_proc_macro_span`. However, proc-macros
support renaming the `proc_macro` crate, so we can't simply hardcode
this path. Previously, the `quote_span` method used the path
`crate::Span` - however, this only works when it is called by the
builtin `quote!` macro in the same crate. To support being called from
arbitrary crates, we need access to the name of the `proc_macro` crate
to generate a path. This PR adds an additional argument to `quote_span`
to specify the name of the `proc_macro` crate. Howver, this feels kind
of hacky, and we may want to change this before stabilizing anything
quote-related.
Additionally, using `quote_span` currently requires enabling the
`proc_macro_internals` feature. The builtin `quote!` macro
has an `#[allow_internal_unstable]` attribute, but this won't work for
custom quote implementations. This will likely require some additional
tricks to apply `allow_internal_unstable` to the span of
`proc_macro::Span::recover_proc_macro_span`.
Use .name_str() to format primitive types in error messages
This pull request fixes#84976. The problem described there is caused by this code
506e75cbf8/compiler/rustc_middle/src/ty/error.rs (L161-L166)
using `Debug` formatting (`{:?}`), while the proper solution is to call `name_str()` of `ty::IntTy`, `ty::UintTy` and `ty::FloatTy`, respectively.
Add primary marker on codegen unit and generate main wrapper on primary codegen.
This is the codegen part of changes extracted from #84062.
This add a marker called `primary` on each codegen units, where exactly one codegen unit will be `primary = true` at a time. This specific codegen unit will take charge of generating `main` wrapper when `main` is imported from a foreign crate after the implementation of RFC 1260.
cc #28937
I'm not sure who should i ask for review for codegen changes, so feel free to reassign.
r? `@nagisa`
CTFE inbounds-error-messages tweak
* use CheckInAllocMsg::PointerArithmeticTest for ptr_offset error
* nicer errors for some null pointer cases
r? `@oli-obk`
This commit implements both the native linking modifiers infrastructure
as well as an initial attempt at the individual modifiers from the RFC.
It also introduces a feature flag for the general syntax along with
individual feature flags for each modifier.
Remove `rustc_middle::mir::interpret::CheckInAllocMsg::NullPointerTest`
Removing it per https://github.com/rust-lang/rust/pull/84842#discussion_r625589674: it's a dead enum variant.
Note that `PointerArithmeticTest` also seems dead:
```
$ rg -F PointerArithmeticTest -C5
compiler/rustc_middle/src/mir/interpret/error.rs
169-
170-/// Details of why a pointer had to be in-bounds.
171-#[derive(Debug, Copy, Clone, TyEncodable, TyDecodable, HashStable)]
172-pub enum CheckInAllocMsg {
173- MemoryAccessTest,
174: PointerArithmeticTest,
175- InboundsTest,
176-}
177-
178-impl fmt::Display for CheckInAllocMsg {
179- /// When this is printed as an error the context looks like this
--
182- write!(
183- f,
184- "{}",
185- match *self {
186- CheckInAllocMsg::MemoryAccessTest => "memory access",
187: CheckInAllocMsg::PointerArithmeticTest => "pointer arithmetic",
188- CheckInAllocMsg::InboundsTest => "inbounds test",
189- }
190- )
191- }
192-}
```
Not sure if that is also desirable to be removed, however.
Update BARE_TRAIT_OBJECT and ELLIPSIS_INCLUSIVE_RANGE_PATTERNS to errors in Rust 2021
This addresses https://github.com/rust-lang/rust/pull/81244 by updating two lints to errors in the Rust 2021 edition.
r? `@estebank`
This ensures that `ParamEnv::and` preserves the original `caller_bounds`
when we have a value containing fresh tys/consts. This ensures that when
we cache a `SelectionCandidate`, the cache key (a `ParamEnvAnd`)
contains all of the information that influenced the computation of our
result (e.g. we may end up choosing a `ParamCandidate`)
Move HIR parenting information out of hir_owner
Split out of #82681.
The parent of a HIR node and its content are currently bundled together, but are rarely used together.
This PR separates both information in two distinct queries for HIR owners.
This reduces incremental invalidation for HIR items that appear within a function body when this body (and the local ids) changes.
Move iter_results to dyn FnMut rather than a generic
This means that we're no longer generating the iteration/locking code for each invocation site of iter_results, rather just once per query (roughly), which seems much better: this is a 15% win in instruction counts when compiling the rustc_query_impl crate. The code where this is used also is pretty cold, I suspect; the old solution didn't fully monomorphize either.
Implement RFC 1260 with feature_name `imported_main`.
This is the second extraction part of #84062 plus additional adjustments.
This (mostly) implements RFC 1260.
However there's still one test case failure in the extern crate case. Maybe `LocalDefId` doesn't work here? I'm not sure.
cc https://github.com/rust-lang/rust/issues/28937
r? `@petrochenkov`
This means that we're no longer generating the iteration/locking code for each
invocation site of iter_results, rather just once per query.
This is a 15% win in instruction counts when compiling the rustc_query_impl crate.
Add TRACKED_NO_CRATE_HASH and use it for `--remap-path-prefix`
I verified locally that this fixes https://github.com/rust-lang/rust/issues/66955.
r? `@Aaron1011` (feel free to reassign)
Adds feature-gated `#[no_coverage]` function attribute, to fix derived Eq `0` coverage issue #83601
Derived Eq no longer shows uncovered
The Eq trait has a special hidden function. MIR `InstrumentCoverage`
would add this function to the coverage map, but it is never called, so
the `Eq` trait would always appear uncovered.
Fixes: #83601
The fix required creating a new function attribute `no_coverage` to mark
functions that should be ignored by `InstrumentCoverage` and the
coverage `mapgen` (during codegen).
Adding a `no_coverage` feature gate with tracking issue #84605.
r? `@tmandry`
cc: `@wesleywiser`
The Eq trait has a special hidden function. MIR `InstrumentCoverage`
would add this function to the coverage map, but it is never called, so
the `Eq` trait would always appear uncovered.
Fixes: #83601
The fix required creating a new function attribute `no_coverage` to mark
functions that should be ignored by `InstrumentCoverage` and the
coverage `mapgen` (during codegen).
While testing, I also noticed two other issues:
* spanview debug file output ICEd on a function with no body. The
workaround for this is included in this PR.
* `assert_*!()` macro coverage can appear covered if followed by another
`assert_*!()` macro. Normally they appear uncovered. I submitted a new
Issue #84561, and added a coverage test to demonstrate this issue.
This is necessary for options that should invalidate the incremental
hash but *not* affect the crate hash (e.g. --remap-path-prefix).
This doesn't add `for_crate_hash` to the trait directly because it's not
relevant for *types*, only for *options*, which are fields on a larger
struct. Instead, it adds a new `SUBSTRUCT` directive for options, which
does take a `for_crate_hash` parameter.
- Use TRACKED_NO_CRATE_HASH for --remap-path-prefix
- Add test that `remap_path_prefix` is tracked
- Reduce duplication in the test suite to avoid future churn
Get rid of is_min_const_fn
This removes the last trace of the min_const_fn mechanism by making the unsafety checker agnostic about whether something is a min or "non-min" const fn. It seems this distinction was used to disallow some features inside `const fn`, but that is the responsibility of the const checker, not of the unsafety checker. No test seems to even notice this change in the unsafety checker so I guess we are good...
r? `@oli-obk`
Cc https://github.com/rust-lang/rust/issues/84510
various const parameter defaults improvements
Actually resolve names in const parameter defaults, fixing `struct Foo<const N: usize = { usize::MAX }>`.
---
Split generic parameter ban rib for types and consts, allowing
```rust
#![feature(const_generics_defaults)]
struct Q;
struct Foo<T = Q, const Q: usize = 3>(T);
```
---
Remove the type/const ordering restriction if `const_generics_defaults` is active, even if `const_generics` is not. allowing us to stabilize and test const param defaults separately.
---
Check well formedness of const parameter defaults, eagerly emitting an error for `struct Foo<const N: usize = { 0 - 1 }>`
---
Do not forbid const parameters in param defaults, allowing `struct Foo<const N: usize, T = [u8; N]>(T)` and `struct Foo<const N: usize, const M: usize = N>`. Note that this should not change anything which is stabilized, as on stable, type parameters must be in front of const parameters, which means that type parameter defaults are only allowed if no const parameters exist.
We still forbid generic parameters inside of const param types.
r? `@varkor` `@petrochenkov`
Cautiously add IntoIterator for arrays by value
Add the attribute described in #84133, `#[rustc_skip_array_during_method_dispatch]`, which effectively hides a trait from method dispatch when the receiver type is an array.
Then cherry-pick `IntoIterator for [T; N]` from #65819 and gate it with that attribute. Arrays can now be used as `IntoIterator` normally, but `array.into_iter()` has edition-dependent behavior, returning `slice::Iter` for 2015 and 2018 editions, or `array::IntoIter` for 2021 and later.
r? `@nikomatsakis`
cc `@LukasKalbertodt` `@rust-lang/libs`
further split up const_fn feature flag
This continues the work on splitting up `const_fn` into separate feature flags:
* `const_fn_trait_bound` for `const fn` with trait bounds
* `const_fn_unsize` for unsizing coercions in `const fn` (looks like only `dyn` unsizing is still guarded here)
I don't know if there are even any things left that `const_fn` guards... at least libcore and liballoc do not need it any more.
`@oli-obk` are you currently able to do reviews?
Implement a lint that highlights all moves larger than a configured limit
Tracking issue: #83518
[MCP 420](https://github.com/rust-lang/compiler-team/issues/420) still ~blazing~ in progress
r? ```@pnkfelix```
The main open issue I see with this minimal impl of the feature is that the lint is immediately "stable" (so it can be named on stable), even if it is never executed on stable. I don't think we have the concept of unstable lint names or hiding lint names without an active feature gate, so that would be a bigger change.
Introduce CompileMonoItem DepNode
This is likely required for allowing efficient hot code swap support in cg_clif's jit mode. My prototype currently requires re-compiling all functions, which is both slow and uses a lot of memory as there is not support for freeing the memory used by replaced functions yet.
cc https://github.com/bjorn3/rustc_codegen_cranelift/issues/1087
Improve trait/impl method discrepancy errors
* Use more accurate spans
* Clean up some code by removing previous hack
* Provide structured suggestions
Structured suggestions are particularly useful for cases where arbitrary self types are used, like in custom `Future`s, because the way to write `self: Pin<&mut Self>` is not necessarily self-evident when first encountered.
Don't concatenate binders across types
Partially addresses #83737
There's actually two issues that I uncovered in #83737. The first is that we are concatenating bound vars across types, i.e. in
```
F: Fn(&()) -> &mut (dyn Future<Output = ()> + Unpin)
```
the bound vars on `Future` get set as `for<anon>` since those are the binders on `Fn(&()`. This is obviously wrong, since we should only concatenate directly nested trait refs. This is solved here by introducing a new `TraitRefBoundary` scope, that we put around the "syntactical" trait refs and basically don't allow concatenation across.
Now, this alone *shouldn't* be a super terrible problem. At least not until you consider the other issue, which is a much more elusive and harder to design a "perfect" fix. A repro can be seen in:
```
use core::future::Future;
async fn handle<F>(slf: &F)
where
F: Fn(&()) -> &mut (dyn for<'a> Future<Output = ()> + Unpin),
{
(slf)(&()).await;
}
```
Notice the `for<'a>` around `Future`. Here, `'a` is unused, so the `for<'a>` Binder gets changed to a `for<>` Binder in the generator witness, but the "local decl" still has it. This has heavy intersections with region anonymization and erasing. Luckily, it's not *super* common to find this unique set of circumstances. It only became apparently because of the first issue mentioned here. However, this *is* still a problem, so I'm leaving #83737 open.
r? `@nikomatsakis`
This commit implements the idea of a new ABI for the WebAssembly target,
one called `"wasm"`. This ABI is entirely of my own invention
and has no current precedent, but I think that the addition of this ABI
might help solve a number of issues with the WebAssembly targets.
When `wasm32-unknown-unknown` was first added to Rust I naively
"implemented an abi" for the target. I then went to write `wasm-bindgen`
which accidentally relied on details of this ABI. Turns out the ABI
definition didn't match C, which is causing issues for C/Rust interop.
Currently the compiler has a "wasm32 bindgen compat" ABI which is the
original implementation I added, and it's purely there for, well,
`wasm-bindgen`.
Another issue with the WebAssembly target is that it's not clear to me
when and if the default C ABI will change to account for WebAssembly's
multi-value feature (a feature that allows functions to return multiple
values). Even if this does happen, though, it seems like the C ABI will
be guided based on the performance of WebAssembly code and will likely
not match even what the current wasm-bindgen-compat ABI is today. This
leaves a hole in Rust's expressivity in binding WebAssembly where given
a particular import type, Rust may not be able to import that signature
with an updated C ABI for multi-value.
To fix these issues I had the idea of a new ABI for WebAssembly, one
called `wasm`. The definition of this ABI is "what you write
maps straight to wasm". The goal here is that whatever you write down in
the parameter list or in the return values goes straight into the
function's signature in the WebAssembly file. This special ABI is for
intentionally matching the ABI of an imported function from the
environment or exporting a function with the right signature.
With the addition of a new ABI, this enables rustc to:
* Eventually remove the "wasm-bindgen compat hack". Once this
ABI is stable wasm-bindgen can switch to using it everywhere.
Afterwards the wasm32-unknown-unknown target can have its default ABI
updated to match C.
* Expose the ability to precisely match an ABI signature for a
WebAssembly function, regardless of what the C ABI that clang chooses
turns out to be.
* Continue to evolve the definition of the default C ABI to match what
clang does on all targets, since the purpose of that ABI will be
explicitly matching C rather than generating particular function
imports/exports.
Naturally this is implemented as an unstable feature initially, but it
would be nice for this to get stabilized (if it works) in the near-ish
future to remove the wasm32-unknown-unknown incompatibility with the C
ABI. Doing this, however, requires the feature to be on stable because
wasm-bindgen works with stable Rust.
Stabilize cmp_min_max_by
I would like to propose cmp::{min_by, min_by_key, max_by, max_by_key}
for stabilization.
These are relatively simple and seemingly uncontroversial functions and
have been unchanged in unstable for a while now.
Closes: #64460
I would like to propose cmp::{min_by, min_by_key, max_by, max_by_key}
for stabilization.
These are relatively simple and seemingly uncontroversial functions and
have been unchanged in unstable for a while now.
Use AnonConst for asm! constants
This replaces the old system which used explicit promotion. See #83169 for more background.
The syntax for `const` operands is still the same as before: `const <expr>`.
Fixes#83169
Because the implementation is heavily based on inline consts, we suffer from the same issues:
- We lose the ability to use expressions derived from generics. See the deleted tests in `src/test/ui/asm/const.rs`.
- We are hitting the same ICEs as inline consts, for example #78174. It is unlikely that we will be able to stabilize this before inline consts are stabilized.
Allow specifying alignment for functions
Fixes#75072
This allows the user to specify alignment for functions, which can be useful for low level work where functions need to necessarily be aligned to a specific value.
I believe the error cases not covered in the match are caught earlier based on my testing so I had them just return `None`.
Prevent very long compilation runtimes in LateBoundRegionNameCollector
Fixes https://github.com/rust-lang/rust/issues/83150
On recursive types such as in the example given in https://github.com/rust-lang/rust/issues/83150, the current implementation of `LateBoundRegionNameCollector` has very long compilation runtimes. To prevent those we store the types visited in the `middle::ty::Visitor` implementation of `LateBoundRegionNameCollector` in a `SsoHashSet`.
2229: Fix diagnostic issue when using FakeReads in closures
This PR fixes a diagnostic issue caused by https://github.com/rust-lang/rust/pull/82536. A temporary work around was used in this merged PR which involved feature gating the addition of FakeReads introduced as a result of pattern matching in closures.
The fix involves adding an optional closure DefId to ForLet and ForMatchedPlace FakeReadCauses. This DefId will only be added if a closure pattern matches a Place starting with an Upvar.
r? ```@nikomatsakis```
Translate counters from Rust 1-based to LLVM 0-based counter ids
A colleague contacted me and asked why Rust's counters start at 1, when
Clangs appear to start at 0. There is a reason why Rust's internal
counters start at 1 (see the docs), and I tried to keep them consistent
when codegenned to LLVM's coverage mapping format. LLVM should be
tolerant of missing counters, but as my colleague pointed out,
`llvm-cov` will silently fail to generate a coverage report for a
function based on LLVM's assumption that the counters are 0-based.
See:
https://github.com/llvm/llvm-project/blob/main/llvm/lib/ProfileData/Coverage/CoverageMapping.cpp#L170
Apparently, if, for example, a function has no branches, it would have
exactly 1 counter. `CounterValues.size()` would be 1, and (with the
1-based index), the counter ID would be 1. This would fail the check
and abort reporting coverage for the function.
It turns out that by correcting for this during coverage map generation,
by subtracting 1 from the Rust Counter ID (both when generating the
counter increment intrinsic call, and when adding counters to the map),
some uncovered functions (including in tests) now appear covered! This
corrects the coverage for a few tests!
r? `@tmandry`
FYI: `@wesleywiser`
A colleague contacted me and asked why Rust's counters start at 1, when
Clangs appear to start at 0. There is a reason why Rust's internal
counters start at 1 (see the docs), and I tried to keep them consistent
when codegenned to LLVM's coverage mapping format. LLVM should be
tolerant of missing counters, but as my colleague pointed out,
`llvm-cov` will silently fail to generate a coverage report for a
function based on LLVM's assumption that the counters are 0-based.
See:
https://github.com/llvm/llvm-project/blob/main/llvm/lib/ProfileData/Coverage/CoverageMapping.cpp#L170
Apparently, if, for example, a function has no branches, it would have
exactly 1 counter. `CounterValues.size()` would be 1, and (with the
1-based index), the counter ID would be 1. This would fail the check
and abort reporting coverage for the function.
It turns out that by correcting for this during coverage map generation,
by subtracting 1 from the Rust Counter ID (both when generating the
counter increment intrinsic call, and when adding counters to the map),
some uncovered functions (including in tests) now appear covered! This
corrects the coverage for a few tests!
normalize mir::Constant differently from ty::Const in preparation for valtrees
Valtrees are unable to represent many kind of constant values (this is on purpose). For constants that are used at runtime, we do not need a valtree representation and can thus use a different form of evaluation. In order to make this explicit and less fragile, I added a `fold_constant` method to `TypeFolder` and implemented it for normalization. Normalization can now, when it wants to eagerly evaluate a constant, normalize `mir::Constant` directly into a `mir::ConstantKind::Val` instead of relying on the `ty::Const` evaluation.
In the future we can get rid of the `ty::Const` in there entirely and add our own `Unevaluated` variant to `mir::ConstantKind`. This would allow us to remove the `promoted` field from `ty::ConstKind::Unevaluated`, as promoteds can never occur in the type system.
cc `@rust-lang/wg-const-eval`
r? `@lcnr`
Fix expected/found order on impl trait projection mismatch error
fixes#68561
This PR adds a new `ObligationCauseCode` used when checking the concrete type of an impl trait satisfies its bounds, and checks for that cause code in the existing test to see if a projection's normalized type should be the "expected" or "found" type.
The second commit adds a `peel_derives` to that test, which appears to be necessary in some cases (see projection-mismatch-in-impl-where-clause.rs, which would still give expected/found in the wrong order otherwise). This caused some other changes in diagnostics not involving impl trait, but they look correct to me.
Stream the dep-graph to a file instead of storing it in-memory.
This is a reimplementation of #60035.
Instead of storing the dep-graph in-memory, the nodes are encoded as they come
into the a temporary file as they come. At the end of a successful the compilation,
this file is renamed to be the persistent dep-graph, to be decoded during the next
compilation session.
This two-files scheme avoids overwriting the dep-graph on unsuccessful or crashing compilations.
The structure of the file is modified to be the sequence of `(DepNode, Fingerprint, EdgesVec)`.
The deserialization is responsible for going to the more compressed representation.
The `node_count` and `edge_count` are stored in the last 16 bytes of the file,
in order to accurately reserve capacity for the vectors.
At the end of the compilation, the encoder is flushed and dropped.
The graph is not usable after this point: any creation of a node will ICE.
I had to retrofit the debugging options, which is not really pretty.
rustdoc: Only look at blanket impls in `get_blanket_impls`
The idea here is that all the work in 16156fb278/compiler/rustc_middle/src/ty/trait_def.rs (L172-L186) doesn't matter for `get_blanket_impls` - Rustdoc will already pick up on those blocks when it documents the item.
Run LLVM coverage instrumentation passes before optimization passes
This matches the behavior of Clang and allows us to remove several
hacks which were needed to ensure functions weren't optimized away
before reaching the instrumentation pass.
Fixes#83429
cc `@richkadel`
r? `@tmandry`
This matches the behavior of Clang and allows us to remove several
hacks which were needed to ensure functions weren't optimized away
before reaching the instrumentation pass.
- Add back various diagnostic methods on `Session`.
It seems unfortunate to duplicate these in so many places, but in the
meantime, making the API inconsistent between `Session` and `Diagnostic`
also seems unfortunate.
- Add back TyCtxtAt methods
These will hopefully be used in the near future.
- Add back `with_const`, it would need to be added soon after anyway.
- Add back `split()` and `get_mut()`, they're useful.
Found with https://github.com/est31/warnalyzer.
Dubious changes:
- Is anyone else using rustc_apfloat? I feel weird completely deleting
x87 support.
- Maybe some of the dead code in rustc_data_structures, in case someone
wants to use it in the future?
- Don't change rustc_serialize
I plan to scrap most of the json module in the near future (see
https://github.com/rust-lang/compiler-team/issues/418) and fixing the
tests needed more work than I expected.
TODO: check if any of the comments on the deleted code should be kept.
Add function core::iter::zip
This makes it a little easier to `zip` iterators:
```rust
for (x, y) in zip(xs, ys) {}
// vs.
for (x, y) in xs.into_iter().zip(ys) {}
```
You can `zip(&mut xs, &ys)` for the conventional `iter_mut()` and
`iter()`, respectively. This can also support arbitrary nesting, where
it's easier to see the item layout than with arbitrary `zip` chains:
```rust
for ((x, y), z) in zip(zip(xs, ys), zs) {}
for (x, (y, z)) in zip(xs, zip(ys, zs)) {}
// vs.
for ((x, y), z) in xs.into_iter().zip(ys).zip(xz) {}
for (x, (y, z)) in xs.into_iter().zip((ys.into_iter().zip(xz)) {}
```
It may also format more nicely, especially when the first iterator is a
longer chain of methods -- for example:
```rust
iter::zip(
trait_ref.substs.types().skip(1),
impl_trait_ref.substs.types().skip(1),
)
// vs.
trait_ref
.substs
.types()
.skip(1)
.zip(impl_trait_ref.substs.types().skip(1))
```
This replaces the tuple-pair `IntoIterator` in #78204.
There is prior art for the utility of this in [`itertools::zip`].
[`itertools::zip`]: https://docs.rs/itertools/0.10.0/itertools/fn.zip.html
make unaligned_references future-incompat lint warn-by-default
and also remove the safe_packed_borrows lint that it replaces.
`std::ptr::addr_of!` has hit beta now and will hit stable in a month, so I propose we start fixing https://github.com/rust-lang/rust/issues/27060 for real: creating a reference to a field of a packed struct needs to eventually become a hard error; this PR makes it a warn-by-default future-incompat lint. (The lint already existed, this just raises its default level.) At the same time I removed the corresponding code from unsafety checking; really there's no reason an `unsafe` block should make any difference here.
For references to packed fields outside `unsafe` blocks, this means `unaligned_refereces` replaces the previous `safe_packed_borrows` warning with a link to https://github.com/rust-lang/rust/issues/82523 (and no more talk about unsafe blocks making any difference). So behavior barely changes, the warning is just worded differently. For references to packed fields inside `unsafe` blocks, this PR shows a new future-incompat warning.
Closes https://github.com/rust-lang/rust/issues/46043 because that lint no longer exists.
combine: stop eagerly evaluating consts
`super_relate_consts` eagerly evaluates constants which doesn't seem too great.
I now also finally understand why all of the unused substs test passed. The reason being
that we just evaluated the constants in `super_relate_consts` 😆
While this change isn't strictly necessary as evaluating consts here doesn't hurt, it still feels a lot cleaner to do it this way
r? `@oli-obk` `@nikomatsakis`
Allow for reading raw bytes from rustc_serialize::Decoder without unsafe code
The current `read_raw_bytes` method requires using `MaybeUninit` and `unsafe`. I don't think this is necessary. Let's see if a safe interface has any performance drawbacks.
This is a followup to #83273 and will make it easier to rebase #82183.
r? `@cjgillot`
Refactor rustc_resolve::late::lifetimes to resolve per-item
There are some changes to tests that I'd like some feedback on; so this is still WIP.
The reason behind this change will (hopefully) allow us to (as part of #76814) be able to essentially use the lifetime resolve code to resolve *all* late bound vars (including those of super traits). Currently, it only resolves those that are *syntactically* in scope. In #76814, I'm essentially finding that I would essentially have to redo the passing of bound vars through scopes (i.e. when instantiating a poly trait ref), and that's what this code does anyways. However, to be able to do this (ask super traits what bound vars are in scope), we have to be able to resolve items separately.
The first commit is actually partially orthogonal. Essentially removing one use of late bound debruijn indices.
Not exactly sure who would be best to review here.
Let r? `@nikomatsakis`
GenericParam does not need to be a HIR owner.
The special case is not required.
Universal impl traits design to regular generic parameters, and their content is owned by the enclosing item.
Existential (and opaque) impl traits generate their own enclosing item, and are collected through it.
coverage bug fixes and optimization support
Adjusted LLVM codegen for code compiled with `-Zinstrument-coverage` to
address multiple, somewhat related issues.
Fixed a significant flaw in prior coverage solution: Every counter
generated a new counter variable, but there should have only been one
counter variable per function. This appears to have bloated .profraw
files significantly. (For a small program, it increased the size by
about 40%. I have not tested large programs, but there is anecdotal
evidence that profraw files were way too large. This is a good fix,
regardless, but hopefully it also addresses related issues.
Fixes: #82144
Invalid LLVM coverage data produced when compiled with -C opt-level=1
Existing tests now work up to at least `opt-level=3`. This required a
detailed analysis of the LLVM IR, comparisons with Clang C++ LLVM IR
when compiled with coverage, and a lot of trial and error with codegen
adjustments.
The biggest hurdle was figuring out how to continue to support coverage
results for unused functions and generics. Rust's coverage results have
three advantages over Clang's coverage results:
1. Rust's coverage map does not include any overlapping code regions,
making coverage counting unambiguous.
2. Rust generates coverage results (showing zero counts) for all unused
functions, including generics. (Clang does not generate coverage for
uninstantiated template functions.)
3. Rust's unused functions produce minimal stubbed functions in LLVM IR,
sufficient for including in the coverage results; while Clang must
generate the complete LLVM IR for each unused function, even though
it will never be called.
This PR removes the previous hack of attempting to inject coverage into
some other existing function instance, and generates dedicated instances
for each unused function. This change, and a few other adjustments
(similar to what is required for `-C link-dead-code`, but with lower
impact), makes it possible to support LLVM optimizations.
Fixes: #79651
Coverage report: "Unexecuted instantiation:..." for a generic function
from multiple crates
Fixed by removing the aforementioned hack. Some "Unexecuted
instantiation" notices are unavoidable, as explained in the
`used_crate.rs` test, but `-Zinstrument-coverage` has new options to
back off support for either unused generics, or all unused functions,
which avoids the notice, at the cost of less coverage of unused
functions.
Fixes: #82875
Invalid LLVM coverage data produced with crate brotli_decompressor
Fixed by disabling the LLVM function attribute that forces inlining, if
`-Z instrument-coverage` is enabled. This attribute is applied to
Rust functions with `#[inline(always)], and in some cases, the forced
inlining breaks coverage instrumentation and reports.
FYI: `@wesleywiser`
r? `@tmandry`
This currently creates a field which is always false on GenericParamDefKind for future use when
consts are permitted to have defaults
Update const_generics:default locations
Previously just ignored them, now actually do something about them.
Fix using type check instead of value
Add parsing
This adds all the necessary changes to lower const-generics defaults from parsing.
Change P<Expr> to AnonConst
This matches the arguments passed to instantiations of const generics, and makes it specific to
just anonymous constants.
Attempt to fix lowering bugs
This saves us both the Freeze/Unpin queries, and avoids placing
noalias attributes, which have a compile-time impact on LLVM
even in optnone builds (due to always_inline functions).
Such structures may contain self-references, in which case the
same location may be accessible through a pointer that is not
based-on the noalias pointer.
This is still grey area as far as language semantics are concerned,
but checking for !Unpin as an indicator for self-referential
sturctures seems like a good approach for the meantime.
The frontend shouldn't be deciding whether or not to use mutable
noalias attributes, as this is a pure LLVM concern. Only provide
the necessary information and do the actual decision in
codegen_llvm.
const_evaluatable_checked: Stop eagerly erroring in `is_const_evaluatable`
Fixes#82279
We don't want to be emitting errors inside of is_const_evaluatable because we may call this during selection where it should be able to fail silently
There were two errors being emitted in `is_const_evaluatable`. The one causing the compile error in #82279 was inside the match arm for `FailureKind::MentionsParam` but I moved the other error being emitted too since it made things cleaner imo
The `NotConstEvaluatable` enum \*should\* have a fourth variant for when we fail to evaluate a concrete const, e.g. `0 - 1` but that cant happen until #81339
cc `@oli-obk` `@lcnr`
r? `@nikomatsakis`
Adjusted LLVM codegen for code compiled with `-Zinstrument-coverage` to
address multiple, somewhat related issues.
Fixed a significant flaw in prior coverage solution: Every counter
generated a new counter variable, but there should have only been one
counter variable per function. This appears to have bloated .profraw
files significantly. (For a small program, it increased the size by
about 40%. I have not tested large programs, but there is anecdotal
evidence that profraw files were way too large. This is a good fix,
regardless, but hopefully it also addresses related issues.
Fixes: #82144
Invalid LLVM coverage data produced when compiled with -C opt-level=1
Existing tests now work up to at least `opt-level=3`. This required a
detailed analysis of the LLVM IR, comparisons with Clang C++ LLVM IR
when compiled with coverage, and a lot of trial and error with codegen
adjustments.
The biggest hurdle was figuring out how to continue to support coverage
results for unused functions and generics. Rust's coverage results have
three advantages over Clang's coverage results:
1. Rust's coverage map does not include any overlapping code regions,
making coverage counting unambiguous.
2. Rust generates coverage results (showing zero counts) for all unused
functions, including generics. (Clang does not generate coverage for
uninstantiated template functions.)
3. Rust's unused functions produce minimal stubbed functions in LLVM IR,
sufficient for including in the coverage results; while Clang must
generate the complete LLVM IR for each unused function, even though
it will never be called.
This PR removes the previous hack of attempting to inject coverage into
some other existing function instance, and generates dedicated instances
for each unused function. This change, and a few other adjustments
(similar to what is required for `-C link-dead-code`, but with lower
impact), makes it possible to support LLVM optimizations.
Fixes: #79651
Coverage report: "Unexecuted instantiation:..." for a generic function
from multiple crates
Fixed by removing the aforementioned hack. Some "Unexecuted
instantiation" notices are unavoidable, as explained in the
`used_crate.rs` test, but `-Zinstrument-coverage` has new options to
back off support for either unused generics, or all unused functions,
which avoids the notice, at the cost of less coverage of unused
functions.
Fixes: #82875
Invalid LLVM coverage data produced with crate brotli_decompressor
Fixed by disabling the LLVM function attribute that forces inlining, if
`-Z instrument-coverage` is enabled. This attribute is applied to
Rust functions with `#[inline(always)], and in some cases, the forced
inlining breaks coverage instrumentation and reports.
Replace closures_captures and upvar_capture with closure_min_captures
Removed all uses of closures_captures and upvar_capture and refactored code to work with closure_min_captures. This also involved removing functions that were no longer needed like the bridge.
Closes https://github.com/rust-lang/project-rfc-2229/issues/18
r? `@nikomatsakis`
make changes to liveness to use closure_min_captures
use different span
borrow check uses new structures
rename to CapturedPlace
stop using upvar_capture in regionck
remove the bridge
cleanup from rebase + remove the upvar_capture reference from mutability_errors.rs
remove line from livenes test
make our unused var checking more consistent
update tests
adding more warnings to the tests
move is_ancestor_or_same_capture to rustc_middle/ty
update names to reflect the closures
add FIXME
check that all captures are immutable borrows before returning
add surrounding if statement like the original
move var out of the loop and rename
Co-authored-by: Logan Mosier <logmosier@gmail.com>
Co-authored-by: Roxane Fruytier <roxane.fruytier@hotmail.com>
Make source-based code coverage compatible with MIR inlining
When codegenning code coverage use the instance that coverage data was
originally generated for, to ensure basic level of compatibility with
MIR inlining.
Fixes#83061
ast/hir: Rename field-related structures
I always forget what `ast::Field` and `ast::StructField` mean despite working with AST for long time, so this PR changes the naming to less confusing and more consistent.
- `StructField` -> `FieldDef` ("field definition")
- `Field` -> `ExprField` ("expression field", not "field expression")
- `FieldPat` -> `PatField` ("pattern field", not "field pattern")
Various visiting and other methods working with the fields are renamed correspondingly too.
The second commit reduces the size of `ExprKind` by boxing fields of `ExprKind::Struct` in preparation for https://github.com/rust-lang/rust/pull/80080.
Do not insert impl_trait_in_bindings opaque definitions twice.
The reference to the item already appears inside the `OpaqueDef`. It does not need to be repeated as a statement.
Implement (but don't use) valtree and refactor in preparation of use
This PR does not cause any functional change. It refactors various things that are needed to make valtrees possible. This refactoring got big enough that I decided I'd want it reviewed as a PR instead of trying to make one huge PR with all the changes.
cc `@rust-lang/wg-const-eval` on the following commits:
* 2027184 implement valtree
* eeecea9 fallible Scalar -> ScalarInt
* 042f663 ScalarInt convenience methods
cc `@eddyb` on ef04a6d
cc `@rust-lang/wg-mir-opt` for cf1700c (`mir::Constant` can now represent either a `ConstValue` or a `ty::Const`, and it is totally possible to have two different representations for the same value)
2229: Handle patterns within closures correctly when `capture_disjoint_fields` is enabled
This PR fixes several issues related to handling patterns within closures when `capture_disjoint_fields` is enabled.
1. Matching is always considered a use of the place, even with `_` patterns
2. Compiler ICE when capturing fields in closures through `let` assignments
To do so, we
- Introduced new Fake Reads
- Delayed use of `Place` in favor of `PlaceBuilder`
- Ensured that `PlaceBuilder` can be resolved before attempting to extract `Place` in any of the pattern matching code
Closes rust-lang/project-rfc-2229/issues/27
Closes rust-lang/project-rfc-2229/issues/24
r? `@nikomatsakis`
StructField -> FieldDef ("field definition")
Field -> ExprField ("expression field", not "field expression")
FieldPat -> PatField ("pattern field", not "field pattern")
Also rename visiting and other methods working on them.
83054 introduced validation of scalar range attributes, but panicking
code that uses the attribute remained reachable. Use `delay_span_bug`
instead to avoid the ICE.
Consider functions to be reachable for code coverage purposes, either
when they reach the code generation directly, or indirectly as inlined
part of another function.
Don't encode file information for span with a dummy location
Fixes#83112
The location information for a dummy span isn't real, so don't encode
it. This brings the incr comp cache code into line with the Span
`StableHash` impl, which doesn't hash the location information for dummy
spans.
Previously, we would attempt to load the 'original' file from a dummy
span - if the file id changed (e.g. due to being moved on disk), we would get an
ICE, since the Span was still valid due to its hash being unchanged.
Remove unused `opt_local_def_id_to_hir_id` function
Found while investigating #82933 - all LocalDefIds are expected to have
HirIds, there's no point in pretending otherwise.
Update to rustc-rayon 0.3.1
This pulls in rust-lang/rustc-rayon#8 to fix#81425. (h/t `@ammaraskar)`
That revealed weak constraints on `rustc_arena::DropArena`, because its
`DropType` was holding type-erased raw pointers to generic `T`. We can
implement `Send` for `DropType` (under `cfg(parallel_compiler)`) by
requiring all `T: Send` before they're type-erased.
Fixes#83112
The location information for a dummy span isn't real, so don't encode
it. This brings the incr comp cache code into line with the Span
`StableHash` impl, which doesn't hash the location information for dummy
spans.
Previously, we would attempt to load the 'original' file from a dummy
span - if the file id changed (e.g. due to being moved on disk), we would get an
ICE, since the Span was still valid due to its hash being unchanged.
Value trees won't have scalar ptr at all, so we need a scalar int printing method anyway. This way we'll be able to share that method between all const representations.
valtree is a version of constants that is inherently safe to be used within types.
This is in contrast to ty::Const which can have different representations of the same value. These representation differences can show up in hashing or equality comparisons, breaking type equality of otherwise equal types.
valtrees do not have this problem.
Shorten `rustc_middle::ty::mod`
Related to #60302.
This PR moves all `Adt*`, `Assoc*`, `Generic*`, and `UpVar*` types to separate files.
This, alongside some `use` reordering, puts `mod.rs` at ~2,200 lines, thus removing the `// ignore-tidy-filelength`.
The particular groups were chosen as they had 4 or more "substantive" members.
This pulls in rust-lang/rustc-rayon#8 to fix#81425. (h/t @ammaraskar)
That revealed weak constraints on `rustc_arena::DropArena`, because its
`DropType` was holding type-erased raw pointers to generic `T`. We can
implement `Send` for `DropType` (under `cfg(parallel_compiler)`) by
requiring all `T: Send` before they're type-erased.