The SCCs of the region graph are not a reliable heuristic to use for blaming an interesting
constraint for diagnostics. For region errors, if the outlived region is `'static`, or the involved
types are invariant in their lifetiems, there will be cycles in the constraint graph containing both
the target region and the most interesting constraints to blame. To get better diagnostics in these
cases, this commit removes that heuristic.
`ExtraConstraintInfo` was used only for a single subdiagnostic, so this moves the logic for that
to its own function and eliminates the indirection. In order to do so cleanly, this also changes
the arguments to `BorrowExplanation::add_explanation_to_diagnostic`, which happens to simplify its
call sites.
A few borrowck tweaks to improve 2024 edition migration lints
See first two commits' changes to test outputs. Test coverage in this area is kinda weak, but I think it affects more cases than this (like the craters that will begin to trigger the `tail_expr_drop_order` tests in #134523).
Third commit is a drive-by change that removes a deref hack from `UseSpans` which doesn't really improve diagnostics much.
Mention `unnameable_types` in `unreachable_pub` documentation.
This link makes sense because someone who wishes to avoid unusable `pub` is likely, but not guaranteed, to be interested in avoiding unnameable types.
Also fixed some grammar problems I noticed in the area.
Fixes#116604.
r? Urgau
add m68k-unknown-none-elf target
r? `@workingjubilee`
The existing `m68k-unknown-linux-gnu` target builds `std` by default, requires atomics, and has a base cpu with an fpu. A smaller/more embedded target is desirable both to have a baseline target for the ISA, as well to make debugging easier for working on the llvm backend. Currently this target is using the `M68010` as the minimum CPU due, but as missing features are merged into the `M68k` llvm backend I am hoping to lower this further.
I have been able to build very small crates using a toolchain built against this target (together with a later version of `object`) using the configuration described in the target platform-support documentation, although getting anything of substantial complexity to build quickly hits errors in the llvm backend
This link makes sense because someone who wishes to avoid unusable `pub`
is likely, but not guaranteed, to be interested in avoiding unnameable
types.
Also fixed some grammar problems I noticed in the area.
Fixes#116604.
cg_llvm: Use constants for DWARF opcodes, instead of FFI calls
Split off from #134009 to incorporate feedback from https://github.com/rust-lang/rust/pull/134009#discussion_r1903133906.
Most of the constant values now come from gimli, which is already a compiler dependency.
I noticed that `DW_OP_LLVM_fragment` is an LLVM detail that is not defined by DWARF and could hypothetically change, so I added a static assertion on the C++ side to detect that if it ever happens.
r? workingjubilee
Add a notion of "some ABIs require certain target features"
I think I finally found the right shape for the data and checks that I recently added in https://github.com/rust-lang/rust/pull/133099, https://github.com/rust-lang/rust/pull/133417, https://github.com/rust-lang/rust/pull/134337: we have a notion of "this ABI requires the following list of target features, and it is incompatible with the following list of target features". Both `-Ctarget-feature` and `#[target_feature]` are updated to ensure we follow the rules of the ABI. This removes all the "toggleability" stuff introduced before, though we do keep the notion of a fully "forbidden" target feature -- this is needed to deal with target features that are actual ABI switches, and hence are needed to even compute the list of required target features.
We always explicitly (un)set all required and in-conflict features, just to avoid potential trouble caused by the default features of whatever the base CPU is. We do this *before* applying `-Ctarget-feature` to maintain backward compatibility; this poses a slight risk of missing some implicit feature dependencies in LLVM but has the advantage of not breaking users that deliberately toggle ABI-relevant target features. They get a warning but the feature does get toggled the way they requested.
For now, our logic supports x86, ARM, and RISC-V (just like the previous logic did). Unsurprisingly, RISC-V is the nicest. ;)
As a side-effect this also (unstably) allows *enabling* `x87` when that is harmless. I used the opportunity to mark SSE2 as required on x86-64, to better match the actual logic in LLVM and because all x86-64 chips do have SSE2. This infrastructure also prepares us for requiring SSE on x86-32 when we want to use that for our ABI (and for float semantics sanity), see https://github.com/rust-lang/rust/issues/133611, but no such change is happening in this PR.
r? `@workingjubilee`
Target: Add mips mti baremetal support
Do the same thing as gcc, which use the vendor `mti` to mark the toolchain as MIPS32r2 default.
We support both big endian and little endian flavor:
mips-mti-none-elf
mipsel-mti-none-elf
[Debuginfo] Force enum `DISCR_*` to `static const u64` to allow for inspection via LLDB
see [here](https://rust-lang.zulipchat.com/#narrow/channel/317568-t-compiler.2Fwg-debugging/topic/Revamping.20Debuginfo/near/486614878) for more info.
This change mainly helps `*-msvc` debugged with LLDB. Currently, LLDB cannot inspect `static` struct fields, so the intended visualization for enums is only borderline functional, and niche enums with ranges of discriminant cannot be determined at all .
LLDB *can* inspect `static const` values (though for whatever reason, non-enum/non-u64 consts don't work).
This change adds the `LLVMRustDIBuilderCreateQualifiedType` to the rust FFI layer to wrap the discr type with a `const` modifier, as well as forcing all generated integer enum `DISCR_*` values to be u64's. Those values will only ever be used by debugger visualizers anyway, so it shouldn't be a huge deal, but I left a fixme comment for it just in case.. The `tag` also still properly reflects the discriminant type, so no information is lost.
turn rustc_box into an intrinsic
I am not entirely sure why this was made a special magic attribute, but an intrinsic seems like a more natural way to add magic expressions to the language.
Pass the arch rather than full target name to windows_registry::find_tool
The full target name can be anything with custom target specs. Passing just the arch wasn't possible before cc 1.2, but is now thanks to https://github.com/rust-lang/cc-rs/pull/1285.
try-job: i686-msvc
rustc_intrinsic: support functions without body
We synthesize a HIR body `loop {}` but such bodyless intrinsics.
Most of the diff is due to turning `ItemKind::Fn` into a brace (named-field) enum variant, because it carries a `bool`-typed field now. This is to remember whether the function has a body. MIR building panics to avoid ever translating the fake `loop {}` body, and the intrinsic logic uses the lack of a body to implicitly mark that intrinsic as must-be-overridden.
I first tried actually having no body rather than generating the fake body, but there's a *lot* of code that assumes that all function items have HIR and MIR, so this didn't work very well. Then I noticed that even `rustc_intrinsic_must_be_overridden` intrinsics have MIR generated (they are filled with an `Unreachable` terminator) so I guess I am not the first to discover this. ;)
r? `@oli-obk`
Rollup of 7 pull requests
Successful merges:
- #133964 (core: implement `bool::select_unpredictable`)
- #135001 (Allow using self-contained LLD in bootstrap)
- #135055 (Report impl method has stricter requirements even when RPITIT inference gets in the way)
- #135064 (const-in-pattern: test that the PartialEq impl does not need to be const)
- #135066 (bootstrap: support `./x check run-make-support`)
- #135069 (remove unused function params)
- #135084 (Update carrying_mul_add test to tolerate `nuw`)
r? `@ghost`
`@rustbot` modify labels: rollup
const-in-pattern: test that the PartialEq impl does not need to be const
Fixes https://github.com/rust-lang/rust/issues/119398 by adding a test.
`@compiler-errors` is there some place in the code where we could add a comment saying "as a backcompat hack, here we only require `PartialEq` and not `const PartialEq`"?
r? `@compiler-errors`
Project to `TyKind::Error` when there are unconstrained non-lifetime (ty/const) impl params
It splits the `enforce_impl_params_are_constrained` function into lifetime/non-lifetime, and queryfies the latter. We can then use the result of the latter query (`Result<(), ErrorGuaranteed>`) to intercept projection and constrain the projected type to `TyKind::Error`, which ensures that we leak no ty or const vars to places that don't expect them, like `normalize_erasing_regions`.
The reason we split `enforce_impl_params_are_constrained` into two parts is because we only error for *lifetimes* if the lifetime ends up showing up in any of the associated types of the impl (e.g. we allow `impl<'a> Foo { type Assoc = (); }`). However, in order to compute the `type_of` query for the anonymous associated type of an RPITIT, we need to do trait solving (in `query collect_return_position_impl_trait_in_trait_tys`). That would induce cycles. Luckily, it turns out for lifetimes we don't even care about if they're unconstrained, since they're erased in all contexts that we are trying to fix ICEs. So it's sufficient to keep this check separated out of the query.
I think this is a bit less invasive of an approach compared to #127973. The major difference between this PR and that PR is that we queryify the check instead of merging it into the `explicit_predicates_of` query, and we use the result to taint just projection goals, rather than trait goals too. This doesn't require a lot of new tracking in `ItemCtxt` and `GenericPredicates`, and it also seems to not require any other changes to typeck like that PR did.
Fixes#123141Fixes#125874Fixes#126942Fixes#127804Fixes#130967
r? oli-obk
Improve infer (`_`) suggestions in `const`s and `static`s
Fixes https://github.com/rust-lang/rust/issues/135010.
This PR does a few things to (imo) greatly improve the error message when users write something like `static FOO: [i32; _] = [1, 2, 3]`.
Firstly, it adapts the recovery code for when we encounter `_` in a const/static to work a bit more like `fn foo() -> _`, and removes the somewhat redundant query `diagnostic_only_typeck`.
Secondly, it changes the lowering for `[T; _]` to always lower under the `feature(generic_arg_infer)` logic to `ConstArgKind::Infer`. We still issue the feature error, so it's not doing anything *observable* on the good path, but it does mean that we no longer erroneously interpret `[T; _]`'s array length as a `_` **wildcard expression** (à la destructuring assignment, like `(_, y) = expr`).
Lastly it makes the suggestions verbose and fixes (well, suppresses) a bug with stashing and suggestions.
r? oli-obk
Some type-outlives computation tweaks
Some tweaks that I wrote when investigating https://github.com/rust-lang/rust/issues/135006.
The only commit that's probably interesting here is f3646748cd (the first commit). For some reason it was concerned with filtering out param-env outlives clauses when they matched item-bound outlives clauses. However, if you look at the rest of the control flow for that function, not filtering out those bounds doesn't actually affect the behavior materially.
Pass objcopy args for stripping on OSX
When `-Cstrip` was changed in #131405 to use the bundled rust-objcopy instead of /usr/bin/strip on OSX, strip-like arguments were preserved.
But strip and objcopy are, while being the same binary, different, they have different defaults depending on which binary they are. Notably, strip strips everything by default, and objcopy doesn't strip anything by default.
Additionally, `-S` actually means `--strip-all`, so debuginfo stripped everything and symbols didn't strip anything.
We now correctly pass `--strip-debug` and `--strip-all`.
fixes#135028
try-job: aarch64-apple
try-job: dist-aarch64-apple
Do the same thing as gcc, which use the vendor `mti` to mark
the toolchain as MIPS32r2 default.
We support both big endian and little endian flavor:
mips-mti-none-elf
mipsel-mti-none-elf