Get rid of the hir_owner query.
This query was meant as a firewall between `hir_owner_nodes` which is supposed to change often, and the queries that only depend on the item signature. That firewall was inefficient, leaking the contents of the HIR body through `HirId`s.
`hir_owner` incurs a significant cost, as we need to hash HIR twice in multiple modes. This PR proposes to remove it, and simplify the hashing scheme.
For the future, `def_kind`, `def_span`... are much more efficient for incremental decoupling, and should be preferred.
Support async recursive calls (as long as they have indirection)
Before #101692, we stored coroutine witness types directly inside of the coroutine. That means that a coroutine could not contain itself (as a witness field) without creating a cycle in the type representation of the coroutine, which we detected with the `OpaqueTypeExpander`, which is used to detect cycles when expanding opaque types after that are inferred to contain themselves.
After `-Zdrop-tracking-mir` was stabilized, we no longer store these generator witness fields directly, but instead behind a def-id based query. That means there is no technical obstacle in the compiler preventing coroutines from containing themselves per se, other than the fact that for a coroutine to have a non-infinite layout, it must contain itself wrapped in a layer of allocation indirection (like a `Box`).
This means that it should be valid for this code to work:
```
async fn async_fibonacci(i: u32) -> u32 {
if i == 0 || i == 1 {
i
} else {
Box::pin(async_fibonacci(i - 1)).await
+ Box::pin(async_fibonacci(i - 2)).await
}
}
```
Whereas previously, you'd need to coerce the future to `Pin<Box<dyn Future<Output = ...>>` before `await`ing it, to prevent the async's desugared coroutine from containing itself across as await point.
This PR does two things:
1. Only report an error if an opaque expansion cycle is detected *not* through coroutine witness fields.
* Instead, if we find an opaque cycle through coroutine witness fields, we compute the layout of the coroutine. If that results in a cycle error, we report it as a recursive async fn.
4. Reworks the way we report layout errors having to do with coroutines, to make up for the diagnostic regressions introduced by (1.). We actually do even better now, pointing out the call sites of the recursion!
Add `IntoAsyncIterator`
This introduces the `IntoAsyncIterator` trait and uses it in the desugaring of the unstable `for await` loop syntax. This is mostly added for symmetry with `Iterator` and `IntoIterator`.
r? `@compiler-errors`
cc `@rust-lang/libs-api,` `@rust-lang/wg-async`
Add support for `for await` loops
This adds support for `for await` loops. This includes parsing, desugaring in AST->HIR lowering, and adding some support functions to the library.
Given a loop like:
```rust
for await i in iter {
...
}
```
this is desugared to something like:
```rust
let mut iter = iter.into_async_iter();
while let Some(i) = loop {
match core::pin::Pin::new(&mut iter).poll_next(cx) {
Poll::Ready(i) => break i,
Poll::Pending => yield,
}
} {
...
}
```
This PR also adds a basic `IntoAsyncIterator` trait. This is partly for symmetry with the way `Iterator` and `IntoIterator` work. The other reason is that for async iterators it's helpful to have a place apart from the data structure being iterated over to store state. `IntoAsyncIterator` gives us a good place to do this.
I've gated this feature behind `async_for_loop` and opened #118898 as the feature tracking issue.
r? `@compiler-errors`
Refactor AST trait bound modifiers
Instead of having two types to represent trait bound modifiers in the parser / the AST (`parser::ty::BoundModifiers` & `ast::TraitBoundModifier`), only to map one to the other later, just use `parser::ty::BoundModifiers` (moved & renamed to `ast::TraitBoundModifiers`).
The struct type is more extensible and easier to deal with (see [here](https://github.com/rust-lang/rust/pull/119099/files#r1430749981) and [here](https://github.com/rust-lang/rust/pull/119099/files#r1430752116) for context) since it more closely models what it represents: A compound of two kinds of modifiers, constness and polarity. Modeling this as an enum (the now removed `ast::TraitBoundModifier`) meant one had to add a new variant per *combination* of modifier kind, which simply isn't scalable and which lead to a lot of explicit non-DRY matches.
NB: `hir::TraitBoundModifier` being an enum is fine since HIR doesn't need to worry representing invalid modifier kind combinations as those get rejected during AST validation thereby immensely cutting down the number of possibilities.
Collect lang items from AST, get rid of `GenericBound::LangItemTrait`
r? `@cjgillot`
cc #115178
Looking forward, the work to remove `QPath::LangItem` will also be significantly more difficult, but I plan on doing it as well. Specifically, we have to change:
1. A lot of `rustc_ast_lowering` for things like expr `..`
2. A lot of astconv, since we actually instantiate lang and non-lang paths quite differently.
3. A ton of diagnostics and clippy lints that are special-cased via `QPath::LangItem`
Meanwhile, it was pretty easy to remove `GenericBound::LangItemTrait`, so I just did that here.
Introduce support for `async gen` blocks
I'm delighted to demonstrate that `async gen` block are not very difficult to support. They're simply coroutines that yield `Poll<Option<T>>` and return `()`.
**This PR is WIP and in draft mode for now** -- I'm mostly putting it up to show folks that it's possible. This PR needs a lang-team experiment associated with it or possible an RFC, since I don't think it falls under the jurisdiction of the `gen` RFC that was recently authored by oli (https://github.com/rust-lang/rfcs/pull/3513, https://github.com/rust-lang/rust/issues/117078).
### Technical note on the pre-generator-transform yield type:
The reason that the underlying coroutines yield `Poll<Option<T>>` and not `Poll<T>` (which would make more sense, IMO, for the pre-transformed coroutine), is because the `TransformVisitor` that is used to turn coroutines into built-in state machine functions would have to destructure and reconstruct the latter into the former, which requires at least inserting a new basic block (for a `switchInt` terminator, to match on the `Poll` discriminant).
This does mean that the desugaring (at the `rustc_ast_lowering` level) of `async gen` blocks is a bit more involved. However, since we already need to intercept both `.await` and `yield` operators, I don't consider it much of a technical burden.
r? `@ghost`
never_patterns: Parse match arms with no body
Never patterns are meant to signal unreachable cases, and thus don't take bodies:
```rust
let ptr: *const Option<!> = ...;
match *ptr {
None => { foo(); }
Some(!),
}
```
This PR makes rustc accept the above, and enforces that an arm has a body xor is a never pattern. This affects parsing of match arms even with the feature off, so this is delicate. (Plus this is my first non-trivial change to the parser).
~~The last commit is optional; it introduces a bit of churn to allow the new suggestions to be machine-applicable. There may be a better solution? I'm not sure.~~ EDIT: I removed that commit
r? `@compiler-errors`
Remove `#[rustc_host]`, use internal desugaring
Also removed a way for users to explicitly specify the host param since that isn't particularly useful. This should eliminate any pain with encoding attributes across crates and etc.
r? `@compiler-errors`
`DefPathData::(ClosureExpr,ImplTrait)` are renamed to match `DefKind::(Closure,OpaqueTy)`.
`DefPathData::ImplTraitAssocTy` is replaced with `DefPathData::TypeNS(kw::Empty)` because both correspond to `DefKind::AssocTy`.
It's possible that introducing `(DefKind,DefPathData)::AssocOpaqueTy` could be a better solution, but that would be a much more invasive change.
Const generic parameters introduced for effects are moved from `DefPathData::TypeNS` to `DefPathData::ValueNS`, because constants are values.
`DefPathData` is no longer passed to `create_def` functions to avoid redundancy.
Add `never_patterns` feature gate
This PR adds the feature gate and most basic parsing for the experimental `never_patterns` feature. See the tracking issue (https://github.com/rust-lang/rust/issues/118155) for details on the experiment.
`@scottmcm` has agreed to be my lang-team liaison for this experiment.
They're identical to the same-named types from `ast`. I find it silly
(and inefficient) to have all this boilerplate code to convert one type
to an identical type.
There is already a small amount of type sharing between the AST and HIR,
e.g. `Attribute`, `MacroDef`.
The commit adds a `pub use` to `rustc_hir` so that, for example,
`ast::BinOp` can also be referred to as `hir::BinOp`. This is so the
many existing `hir`-qualified mentions of these types don't need to
change.
The commit also moves a couple of operations from the (removed) HIR
types to the AST types, e.g. `is_by_value`.
By default, `newtype_index!` types get a default `Encodable`/`Decodable`
impl. You can opt out of this with `custom_encodable`. Opting out is the
opposite to how Rust normally works with autogenerated (derived) impls.
This commit inverts the behaviour, replacing `custom_encodable` with
`encodable` which opts into the default `Encodable`/`Decodable` impl.
Only 23 of the 59 `newtype_index!` occurrences need `encodable`.
Even better, there were eight crates with a dependency on
`rustc_serialize` just from unused default `Encodable`/`Decodable`
impls. This commit removes that dependency from those eight crates.
- Sort dependencies and features sections.
- Add `tidy` markers to the sorted sections so they stay sorted.
- Remove empty `[lib`] sections.
- Remove "See more keys..." comments.
Excluded files:
- rustc_codegen_{cranelift,gcc}, because they're external.
- rustc_lexer, because it has external use.
- stable_mir, because it has external use.
Implement `gen` blocks in the 2024 edition
Coroutines tracking issue https://github.com/rust-lang/rust/issues/43122
`gen` block tracking issue https://github.com/rust-lang/rust/issues/117078
This PR implements `gen` blocks that implement `Iterator`. Most of the logic with `async` blocks is shared, and thus I renamed various types that were referring to `async` specifically.
An example usage of `gen` blocks is
```rust
fn foo() -> impl Iterator<Item = i32> {
gen {
yield 42;
for i in 5..18 {
if i.is_even() { continue }
yield i * 2;
}
}
}
```
The limitations (to be resolved) of the implementation are listed in the tracking issue
Rename AsyncCoroutineKind to CoroutineSource
pulled out of https://github.com/rust-lang/rust/pull/116447
Also refactors the printing infra of `CoroutineSource` to be ready for easily extending it with a `Gen` variant for `gen` blocks
Partially outline code inside the panic! macro
This outlines code inside the panic! macro in some cases. This is split out from https://github.com/rust-lang/rust/pull/115562 to exclude changes to rustc.
Pretty-print argument-position impl trait to name it.
This removes a corner case.
RPIT and TAIT keep having no name, and it would be wrong to use the one in HIR (Ident::empty), so I make this case ICE.
There was an incomplete version of the check in parsing and a second
version in AST validation. This meant that some, but not all, invalid
uses were allowed inside macros/disabled cfgs. It also means that later
passes have a hard time knowing when the let expression is in a valid
location, sometimes causing ICEs.
- Add a field to ExprKind::Let in AST/HIR to mark whether it's in a
valid location.
- Suppress later errors and MIR construction for invalid let
expressions.
Map RPIT duplicated lifetimes back to fn captured lifetimes
Use the [`lifetime_mapping`](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir/struct.OpaqueTy.html#structfield.lifetime_mapping) to map an RPIT's captured lifetimes back to the early- or late-bound lifetimes from its parent function. We may be going thru several layers of mapping, since opaques can be nested, so we introduce `TyCtxt::map_rpit_lifetime_to_fn_lifetime` to loop through several opaques worth of mapping, and handle turning it into a `ty::Region` as well.
We can then use this instead of the identity substs for RPITs in `check_opaque_meets_bounds` to address #114285.
We can then also use `map_rpit_lifetime_to_fn_lifetime` to properly install bidirectional-outlives predicates for both RPITs and RPITITs. This addresses #114601.
I based this on #114574, but I don't actually know how much of that PR we still need, so some code may be redundant now... 🤷
---
Fixes#114597Fixes#114579Fixes#114285
Also fixes#114601, since it turns out we had other bugs with RPITITs and their duplicated lifetime params 😅.
Supersedes #114574
r? `@oli-obk`