Move `SanityCheck` and `MirPass`
They are currently in `rustc_middle`. This PR moves them to `rustc_mir_transform`, which makes more sense.
r? ``@cjgillot``
Non-exhaustive structs may be empty
This is a follow-up to a discrepancy noticed in https://github.com/rust-lang/rust/pull/122792: today, the following struct is considered inhabited (non-empty) outside its defining crate:
```rust
#[non_exhaustive]
pub struct UninhabitedStruct {
pub never: !,
// other fields
}
```
`#[non_exhaustive]` on a struct should mean that adding fields to it isn't a breaking change. There is no way that adding fields to this struct could make it non-empty since the `never` field must stay and is inconstructible. I suspect this was implemented this way due to confusion with `#[non_exhaustive]` enums, which indeed should be considered non-empty outside their defining crate.
I propose that we consider such a struct uninhabited (empty), just like it would be without the `#[non_exhaustive]` annotation.
Code that doesn't pass today and will pass after this:
```rust
// In a different crate
fn empty_match_on_empty_struct<T>(x: UninhabitedStruct) -> T {
match x {}
}
```
This is not a breaking change.
r? ``@compiler-errors``
Because that's now the only crate that uses it.
Moving stuff out of `rustc_middle` is always welcome.
I chose to use `impl crate::MirPass`/`impl crate::MirLint` (with
explicit `crate::`) everywhere because that's the only mention of
`MirPass`/`MirLint` used in all of these files. (Prior to this change,
`MirPass` was mostly imported via `use rustc_middle::mir::*` items.)
Rewrite lint_expectations in a single pass.
This PR aims at reducing the perf regression from https://github.com/rust-lang/rust/pull/120924#issuecomment-2202486203 with drive-by simplifications.
Basically, instead of using the lint level builder, which is slow, this PR splits `lint_expectations` logic in 2:
- listing the `LintExpectations` is done in `shallow_lint_levels_on`, on a per-owner basis;
- building the unstable->stable expectation id map is done by iterating on attributes.
r? ghost for perf
Rollup of 11 pull requests
Successful merges:
- #128523 (Add release notes for 1.81.0)
- #129605 (Add missing `needs-llvm-components` directives for run-make tests that need target-specific codegen)
- #129650 (Clean up `library/profiler_builtins/build.rs`)
- #129651 (skip stage 0 target check if `BOOTSTRAP_SKIP_TARGET_SANITY` is set)
- #129684 (Enable Miri to pass pointers through FFI)
- #129762 (Update the `wasm-component-ld` binary dependency)
- #129782 (couple more crash tests)
- #129816 (tidy: say which feature gate has a stability issue mismatch)
- #129818 (make the const-unstable-in-stable error more clear)
- #129824 (Fix code examples buttons not appearing on click on mobile)
- #129826 (library: Fix typo in `core::mem`)
r? `@ghost`
`@rustbot` modify labels: rollup
Enable Miri to pass pointers through FFI
Following https://github.com/rust-lang/rust/pull/126787, the purpose of this PR is to now enable Miri to execute native calls that make use of pointers.
> <details>
>
> <summary> Simple example </summary>
>
> ```rust
> extern "C" {
> fn ptr_printer(ptr: *mut i32);
> }
>
> fn main() {
> let ptr = &mut 42 as *mut i32;
> unsafe {
> ptr_printer(ptr);
> }
> }
> ```
> ```c
> void ptr_printer(int *ptr) {
> printf("printing pointer dereference from C: %d\n", *ptr);
> }
> ```
> should now show `printing pointer dereference from C: 42`.
>
> </details>
Note that this PR does not yet implement any logic involved in updating Miri's "analysis" state (byte initialization, provenance) upon such a native call.
r? ``@RalfJung``
Expand NLL MIR dumps
This PR is a first step to clean up and expand NLL MIR dumps:
- by restoring the "mir-include-spans" comments which are useful for `-Zdump-mir=nll`
- by adding the list of borrows to NLL MIR dumps, where they are introduced in the CFG and in which region
Comments in MIR dumps were turned off in #112346, but as shown in #114652 they were still useful for us working with NLL MIR dumps. So this PR pulls `-Z mir-include-spans` into its own options struct, so that passes dumping MIR can override them if need be. The rest of the compiler is not affected, only the "nll" pass dumps have these comments enabled again. The CLI still has priority when specifying the flag, so that we can explicitly turn them off in the `mir-opt` tests to keep blessed dumps easier to work with (which was one of the points of #112346).
Then, as part of a couple steps to improve NLL/polonius MIR dumps and `.dot` visualizations, I've also added the list of borrows and where they're introduced. I'm doing all this to help debug some polonius scope issues in my prototype location-sensitive analysis :3. I'll probably add member constraints soon.
const fn stability checking: also check declared language features
Fixes https://github.com/rust-lang/rust/issues/129656
`@oli-obk` I assume it is just an oversight that this didn't use `features().declared()`? Or is there a deep reason that this must only check `declared_lib_features`?
Stop using `ty::GenericPredicates` for non-predicates_of queries
`GenericPredicates` is a struct of several parts: A list of of an item's own predicates, and a parent def id (and some effects related stuff, but ignore that since it's kinda irrelevant). When instantiating these generic predicates, it calls `predicates_of` on the parent and instantiates its predicates, and appends the item's own instantiated predicates too:
acb4e8b625/compiler/rustc_middle/src/ty/generics.rs (L407-L413)
Notice how this should result in a recursive set of calls to `predicates_of`... However, `GenericPredicates` is *also* misused by a bunch of *other* queries as a convenient way of passing around a list of predicates. For these queries, we don't ever set the parent def id of the `GenericPredicates`, but if we did, then this would be very easy to mistakenly call `predicates_of` instead of some other intended parent query.
Given that footgun, and the fact that we don't ever even *use* the parent def id in the `GenericPredicates` returned from queries like `explicit_super_predicates_of`, It really has no benefit over just returning `&'tcx [(Clause<'tcx>, Span)]`.
This PR additionally opts to wrap the results of `EarlyBinder`, as we've tended to use that in the return type of these kinds of queries to properly convey that the user has params to deal with, and it also gives a convenient way of iterating over a slice of things after instantiating.
We want to allow setting this on the CLI, override it only in MIR
passes, and disable it altogether in mir-opt tests.
The default value is "only for NLL MIR dumps", which is considered off
for all intents and purposes, except for `rustc_borrowck` when an NLL
MIR dump is requested.
Implement a first version of RFC 3525: struct target features
This PR is an attempt at implementing https://github.com/rust-lang/rfcs/pull/3525, behind a feature gate `struct_target_features`.
There's obviously a few tasks that ought to be done before this is merged; in no particular order:
- add proper error messages
- add tests
- create a tracking issue for the RFC
- properly serialize/deserialize the new target_features field in `rmeta` (assuming I even understood that correctly :-))
That said, as I am definitely not a `rustc` expert, I'd like to get some early feedback on the overall approach before fixing those things (and perhaps some pointers for `rmeta`...), hence this early PR :-)
Here's an example piece of code that I have been using for testing - with the new code, the calls to intrinsics get correctly inlined:
```rust
#![feature(struct_target_features)]
use std::arch::x86_64::*;
/*
// fails to compile
#[target_feature(enable = "avx")]
struct Invalid(u32);
*/
#[target_feature(enable = "avx")]
struct Avx {}
#[target_feature(enable = "sse")]
struct Sse();
/*
// fails to compile
extern "C" fn bad_fun(_: Avx) {}
*/
/*
// fails to compile
#[inline(always)]
fn inline_fun(_: Avx) {}
*/
trait Simd {
fn do_something(&self);
}
impl Simd for Avx {
fn do_something(&self) {
unsafe {
println!("{:?}", _mm256_setzero_ps());
}
}
}
impl Simd for Sse {
fn do_something(&self) {
unsafe {
println!("{:?}", _mm_setzero_ps());
}
}
}
struct WithAvx {
#[allow(dead_code)]
avx: Avx,
}
impl Simd for WithAvx {
fn do_something(&self) {
unsafe {
println!("{:?}", _mm256_setzero_ps());
}
}
}
#[inline(never)]
fn dosomething<S: Simd>(simd: &S) {
simd.do_something();
}
fn main() {
/*
// fails to compile
Avx {};
*/
if is_x86_feature_detected!("avx") {
let avx = unsafe { Avx {} };
dosomething(&avx);
dosomething(&WithAvx { avx });
}
if is_x86_feature_detected!("sse") {
dosomething(&unsafe { Sse {} })
}
}
```
Tracking:
- https://github.com/rust-lang/rust/issues/129107
LLVM uses the word "code" to refer to a particular kind of coverage mapping.
This unrelated usage of the word is confusing, and makes it harder to introduce
types whose names correspond to the LLVM classification of coverage kinds.
Get rid of `predicates_defined_on`
This is the uncontroversial part of #129532. This simply inlines the `predicates_defined_on` into into `predicates_of`. Nothing should change here logically.
Stop storing a special inner body for the coroutine by-move body for async closures
...and instead, just synthesize an item which is treated mostly normally by the MIR pipeline.
This PR does a few things:
* We synthesize a new `DefId` for the by-move body of a closure, which has its `mir_built` fed with the output of the `ByMoveBody` MIR transformation, and some other relevant queries.
* This has the `DefKind::ByMoveBody`, which we use to distinguish it from "real" bodies (that come from HIR) which need to be borrowck'd. Introduce `TyCtxt::is_synthetic_mir` to skip over `mir_borrowck` which is called by `mir_promoted`; borrowck isn't really possible to make work ATM since it heavily relies being called on a body generated from HIR, and is redundant by the construction of the by-move-body.
* Remove the special `PassManager` hacks for handling the inner `by_move_body` stored within the coroutine's mir body. Instead, this body is fed like a regular MIR body, so it's goes through all of the `tcx.*_mir` stages normally (build -> promoted -> ...etc... -> optimized) ✨.
* Remove the `InstanceKind::ByMoveBody` shim, since now we have a "regular" def id, we can just use `InstanceKind::Item`. This also allows us to remove the corresponding hacks from codegen, such as in `fn_sig_for_fn_abi` ✨.
Notable remarks:
* ~~I know it's kind of weird to be using `DefKind::Closure` here, since it's not a distinct closure but just a new MIR body. I don't believe it really matters, but I could also use a different `DefKind`... maybe one that we could use for synthetic MIR bodies in general?~~ edit: We're doing this now.
Detect `*` operator on `!Sized` expression
The suggestion is new:
```
error[E0277]: the size for values of type `str` cannot be known at compilation time
--> $DIR/unsized-str-in-return-expr-arg-and-local.rs:15:9
|
LL | let x = *"";
| ^ doesn't have a size known at compile-time
|
= help: the trait `Sized` is not implemented for `str`
= note: all local variables must have a statically known size
= help: unsized locals are gated as an unstable feature
help: references to `!Sized` types like `&str` are `Sized`; consider not dereferencing the expression
|
LL - let x = *"";
LL + let x = "";
|
```
Fix#128199.
Retroactively feature gate `ConstArgKind::Path`
This puts the lowering introduced by #125915 under a feature gate until we fix the regressions introduced by it. Alternative to whole sale reverting the PR since it didn't seem like a very clean revert and I think this is generally a step in the right direction and don't want to get stuck landing and reverting the PR over and over :)
cc #129137 ``@camelid,`` tests taken from there. beta is branching soon so I think it makes sense to not try and rush that fix through since it wont have much time to bake and if it has issues we can't simply revert it on beta.
Fixes#128016
Pretty-print own args of existential projections (dyn-Trait w/ GAT constraints)
Previously we would just drop them. This bug isn't that significant as it can only be triggered by user code that constrains GATs inside trait object types which is currently gated under the interim feature `generic_associated_types_extended` (whose future is questionable) or on stable if the GATs are 'disabled' in dyn-Trait via `where Self: Sized` (in which case the assoc type bindings get ignored anyway (and trigger the warn-by-default lint `unused_associated_type_bounds`)), so yeah.
Affects diagnostic output and output of `std::any::type_name{_of_val}`.
Use `bool` in favor of `Option<()>` for diagnostics
We originally only supported `Option<()>` for optional notes/labels, but we now support `bool`. Let's use that, since it usually leads to more readable code.
I'm not removing the support from the derive macro, though I guess we could error on it... 🤔