Use the type-level constant value `ty::Value` where needed
**Follow-up to #136180**
### Summary
This PR refactors functions to accept a single type-level constant value `ty::Value` instead of separate `ty::ValTree` and `ty::Ty` parameters:
- `valtree_to_const_value`: now takes `ty::Value`
- `pretty_print_const_valtree`: now takes `ty::Value`
- Uses `pretty_print_const_valtree` for formatting valtrees when `visit_const_operand`
- Moves `try_to_raw_bytes` from `ty::Valtree` to `ty::Value`
---
r? ``@lukas-code`` ``@oli-obk``
All hooks receive a `TyCtxtAt` argument.
Currently hooks can be called through `TyCtxtAt` or `TyCtxt`. In the
latter case, a `TyCtxtAt` is constructed with a dummy span and passed to
the hook.
However, in practice hooks are never called through `TyCtxtAt`, and
always receive a dummy span. (I confirmed this via code inspection, and
double-checked it by temporarily making the `TyCtxtAt` code path panic
and running all the tests.)
This commit removes all the `TyCtxtAt` machinery for hooks. All hooks
now receive `TyCtxt` instead of `TyCtxtAt`. There are two existing hooks
that use `TyCtxtAt::span`: `const_caller_location_provider` and
`try_destructure_mir_constant_for_user_output`. For both hooks the span
is always a dummy span, probably unintentionally. This dummy span use is
now explicit. If a non-dummy span is needed for these two hooks it would
be easy to add it as an extra argument because hooks are less
constrained than queries.
Insert null checks for pointer dereferences when debug assertions are enabled
Similar to how the alignment is already checked, this adds a check
for null pointer dereferences in debug mode. It is implemented similarly
to the alignment check as a `MirPass`.
This inserts checks in the same places as the `CheckAlignment` pass and additionally
also inserts checks for `Borrows`, so code like
```rust
let ptr: *const u32 = std::ptr::null();
let val: &u32 = unsafe { &*ptr };
```
will have a check inserted on dereference. This is done because null references
are UB. The alignment check doesn't cover these places, because in `&(*ptr).field`,
the exact requirement is that the final reference must be aligned. This is something to
consider further enhancements of the alignment check.
For now this is implemented as a separate `MirPass`, to make it easy to disable
this check if necessary.
This is related to a 2025H1 project goal for better UB checks in debug
mode: https://github.com/rust-lang/rust-project-goals/pull/177.
r? `@saethlin`
Similar to how the alignment is already checked, this adds a check
for null pointer dereferences in debug mode. It is implemented similarly
to the alignment check as a MirPass.
This is related to a 2025H1 project goal for better UB checks in debug
mode: https://github.com/rust-lang/rust-project-goals/pull/177.
miri: optimize zeroed alloc
When allocating zero-initialized memory in MIR interpretation, rustc allocates zeroed memory, marks it as initialized and then re-zeroes it. Remove the last step.
I don't expect this to have much of an effect on performance normally, but in my case in which I'm creating a large allocation via mmap it gets in the way.
- `check-pass` test for a MRE of #135020
- fail test for #135138
- switch to `TooGeneric` for checking CMSE fn signatures
- switch to `TooGeneric` for compute `SizeSkeleton` (for transmute)
- fix broken tests
`rustc_span::symbol` defines some things that are re-exported from
`rustc_span`, such as `Symbol` and `sym`. But it doesn't re-export some
closely related things such as `Ident` and `kw`. So you can do `use
rustc_span::{Symbol, sym}` but you have to do `use
rustc_span::symbol::{Ident, kw}`, which is inconsistent for no good
reason.
This commit re-exports `Ident`, `kw`, and `MacroRulesNormalizedIdent`,
and changes many `rustc_span::symbol::` qualifiers in `compiler/` to
`rustc_span::`. This is a 200+ net line of code reduction, mostly
because many files with two `use rustc_span` items can be reduced to
one.
Add some convenience helper methods on `hir::Safety`
Makes a lot of call sites simpler and should make any refactorings needed for https://github.com/rust-lang/rust/pull/134090#issuecomment-2541332415 simpler, as fewer sites have to be touched in case we end up storing some information in the variants of `hir::Safety`
Rollup of 7 pull requests
Successful merges:
- #133900 (Advent of `tests/ui` (misc cleanups and improvements) [1/N])
- #133937 (Keep track of parse errors in `mod`s and don't emit resolve errors for paths involving them)
- #133938 (`rustc_mir_dataflow` cleanups, including some renamings)
- #134058 (interpret: reduce usage of TypingEnv::fully_monomorphized)
- #134130 (Stop using driver queries in the public API)
- #134140 (Add AST support for unsafe binders)
- #134229 (Fix typos in docs on provenance)
r? `@ghost`
`@rustbot` modify labels: rollup
Extend Miri to correctly pass mutable pointers through FFI
Based off of https://github.com/rust-lang/rust/pull/129684, this PR further extends Miri to execute native calls that make use of pointers to *mutable* memory.
We adapt Miri's bookkeeping of internal state upon any FFI call that gives external code permission to mutate memory.
Native code may now possibly write and therefore initialize and change the pointer provenance of bytes it has access to: Such memory is assumed to be *initialized* afterwards and bytes are given *arbitrary (wildcard) provenance*. This enables programs that correctly use mutating FFI calls to run Miri without errors, at the cost of possibly missing Undefined Behaviour caused by incorrect usage of mutating FFI.
> <details>
>
> <summary> Simple example </summary>
>
> ```rust
> extern "C" {
> fn init_int(ptr: *mut i32);
> }
>
> fn main() {
> let mut x = std::mem::MaybeUninit::<i32>::uninit();
> let x = unsafe {
> init_int(x.as_mut_ptr());
> x.assume_init()
> };
>
> println!("C initialized my memory to: {x}");
> }
> ```
> ```c
> void init_int(int *ptr) {
> *ptr = 42;
> }
> ```
> should now show `C initialized my memory to: 42`.
>
> </details>
r? ``@RalfJung``
improve TagEncoding::Niche docs, sanity check, and UB checks
Turns out the `niche_variants` range can actually contain the `untagged_variant`. We should report this as UB in Miri, so this PR implements that.
Also rename `partially_check_layout` to `layout_sanity_check` for better consistency with how similar functions are called in other parts of the compiler.
Turns out my adjustments to the transmutation logic also fix https://github.com/rust-lang/rust/issues/126267.
the behavior of the type system not only depends on the current
assumptions, but also the currentnphase of the compiler. This is
mostly necessary as we need to decide whether and how to reveal
opaque types. We track this via the `TypingMode`.
remove const-support for align_offset and is_aligned
As part of the recent discussion to stabilize `ptr.is_null()` in const context, the general vibe was that it's okay for a const function to panic when the same operation would work at runtime (that's just a case of "dynamically detecting that something is not supported as a const operation"), but it is *not* okay for a const function to just return a different result.
Following that, `is_aligned` and `is_aligned_to` have their const status revoked in this PR, since they do return actively wrong results at const time. In the future we can consider having a new intrinsic or so that can check whether a pointer is "guaranteed to be aligned", but the current implementation based on `align_offset` does not have the behavior we want.
In fact `align_offset` itself behaves quite strangely in const, and that support needs a bunch of special hacks. That doesn't seem worth it. Instead, the users that can fall back to a different implementation should just use const_eval_select directly, and everything else should not be made const-callable. So this PR does exactly that, and entirely removes const support for align_offset.
Closes some tracking issues by removing the associated features:
Closes https://github.com/rust-lang/rust/issues/90962
Closes https://github.com/rust-lang/rust/issues/104203
Cc `@rust-lang/wg-const-eval` `@rust-lang/libs-api`
compiler: Directly use rustc_abi almost everywhere
Use rustc_abi instead of rustc_target where applicable. This is mostly described by the following substitutions:
```rust
match path_substring {
rustc_target::spec::abi::Abi => rustc_abi::ExternAbi,
rustc_target::abi::call => rustc_target::callconv,
rustc_target::abi => rustc_abi,
}
```
A number of spot-fixes make that not quite the whole story.
The main exception is in 33edc68 where I get a lot more persnickety about how things are imported, especially in `rustc_middle::ty::layout`, not just from where. This includes putting an end to a reexport of `rustc_middle::ty::ReprOptions`, for the same reason that the rest of this change is happening: reexports mostly confound things.
This notably omits rustc_passes and the ast crates, as I'm still examining a question I have about how they do stability checking of `extern "Abi"` strings and if I can simplify their logic. The rustc_abi and rustc_target crates also go untouched because they will be entangled in that cleanup.
r? compiler-errors
Operations like is_aligned would return actively wrong results at compile-time,
i.e. calling it on the same pointer at compiletime and runtime could yield
different results. That's no good.
Instead of having hacks to make align_offset kind-of work in const-eval, just
use const_eval_select in the few places where it makes sense, which also ensures
those places are all aware they need to make sure the fallback behavior is
consistent.
The initial naming of "Abi" was an awful mistake, conveying wrong ideas
about how psABIs worked and even more about what the enum meant.
It was only meant to represent the way the value would be described to
a codegen backend as it was lowered to that intermediate representation.
It was never meant to mean anything about the actual psABI handling!
The conflation is because LLVM typically will associate a certain form
with a certain ABI, but even that does not hold when the special cases
that actually exist arise, plus the IR annotations that modify the ABI.
Reframe `rustc_abi::Abi` as the `BackendRepr` of the type, and rename
`BackendRepr::Aggregate` as `BackendRepr::Memory`. Unfortunately, due to
the persistent misunderstandings, this too is now incorrect:
- Scattered ABI-relevant code is entangled with BackendRepr
- We do not always pre-compute a correct BackendRepr that reflects how
we "actually" want this value to be handled, so we leave the backend
interface to also inject various special-cases here
- In some cases `BackendRepr::Memory` is a "real" aggregate, but in
others it is in fact using memory, and in some cases it is a scalar!
Our rustc-to-backend lowering code handles this sort of thing right now.
That will eventually be addressed by lifting duplicated lowering code
to either rustc_codegen_ssa or rustc_target as appropriate.
Then we can rename the _raw functions to drop their suffix, and instead
explicitly use is_stable_const_fn for the few cases where that is really what
you want.
Fundamentally, we have *three* disjoint categories of functions:
1. const-stable functions
2. private/unstable functions that are meant to be callable from const-stable functions
3. functions that can make use of unstable const features
This PR implements the following system:
- `#[rustc_const_stable]` puts functions in the first category. It may only be applied to `#[stable]` functions.
- `#[rustc_const_unstable]` by default puts functions in the third category. The new attribute `#[rustc_const_stable_indirect]` can be added to such a function to move it into the second category.
- `const fn` without a const stability marker are in the second category if they are still unstable. They automatically inherit the feature gate for regular calls, it can now also be used for const-calls.
Also, several holes in recursive const stability checking are being closed.
There's still one potential hole that is hard to avoid, which is when MIR
building automatically inserts calls to a particular function in stable
functions -- which happens in the panic machinery. Those need to *not* be
`rustc_const_unstable` (or manually get a `rustc_const_stable_indirect`) to be
sure they follow recursive const stability. But that's a fairly rare and special
case so IMO it's fine.
The net effect of this is that a `#[unstable]` or unmarked function can be
constified simply by marking it as `const fn`, and it will then be
const-callable from stable `const fn` and subject to recursive const stability
requirements. If it is publicly reachable (which implies it cannot be unmarked),
it will be const-unstable under the same feature gate. Only if the function ever
becomes `#[stable]` does it need a `#[rustc_const_unstable]` or
`#[rustc_const_stable]` marker to decide if this should also imply
const-stability.
Adding `#[rustc_const_unstable]` is only needed for (a) functions that need to
use unstable const lang features (including intrinsics), or (b) `#[stable]`
functions that are not yet intended to be const-stable. Adding
`#[rustc_const_stable]` is only needed for functions that are actually meant to
be directly callable from stable const code. `#[rustc_const_stable_indirect]` is
used to mark intrinsics as const-callable and for `#[rustc_const_unstable]`
functions that are actually called from other, exposed-on-stable `const fn`. No
other attributes are required.