Further improve `space_between`
`space_between` is used by `print_tts` to decide when spaces should be put between tokens. This PR improves it in two ways:
- avoid unnecessary spaces before semicolons, and
- don't omit some necessary spaces before/after some punctuation symbols.
r? `@petrochenkov`
Expand the primary span of E0277 when the immediate unmet bound is not what the user wrote:
```
error[E0277]: the trait bound `i32: Bar` is not satisfied
--> f100.rs:6:6
|
6 | <i32 as Foo>::foo();
| ^^^ the trait `Bar` is not implemented for `i32`, which is required by `i32: Foo`
|
help: this trait has no implementations, consider adding one
--> f100.rs:2:1
|
2 | trait Bar {}
| ^^^^^^^^^
note: required for `i32` to implement `Foo`
--> f100.rs:3:14
|
3 | impl<T: Bar> Foo for T {}
| --- ^^^ ^
| |
| unsatisfied trait bound introduced here
```
Fix#40120.
`Diagnostic::keys`, which is used for hashing and equating diagnostics,
has a surprising behaviour: it ignores children, but only for lints.
This was added in #88493 to fix some duplicated diagnostics, but it
doesn't seem necessary any more.
This commit removes the special case and only four tests have changed
output, with additional errors. And those additional errors aren't
exact duplicates, they're just similar. For example, in
src/tools/clippy/tests/ui/same_name_method.rs we currently have this
error:
```
error: method's name is the same as an existing method in a trait
--> $DIR/same_name_method.rs:75:13
|
LL | fn foo() {}
| ^^^^^^^^^^^
|
note: existing `foo` defined here
--> $DIR/same_name_method.rs:79:9
|
LL | impl T1 for S {}
| ^^^^^^^^^^^^^^^^
```
and with this change we also get this error:
```
error: method's name is the same as an existing method in a trait
--> $DIR/same_name_method.rs:75:13
|
LL | fn foo() {}
| ^^^^^^^^^^^
|
note: existing `foo` defined here
--> $DIR/same_name_method.rs:81:9
|
LL | impl T2 for S {}
| ^^^^^^^^^^^^^^^^
```
I think printing this second argument is reasonable, possibly even
preferable to hiding it. And the other cases are similar.
Normalize region obligation in lexical region resolution with next-gen solver
This normalizes region obligations when we `resolve_regions`, since they may be unnormalized with deferred projection equality.
It's pretty hard to add tests that exercise this without also triggering MIR borrowck errors (because we don't normalize there yet). I've added one test with two revisions that should test that we both 1. normalize region obligations in the param env, and 2. normalize registered region obligations during lexical region resolution.
Remove some unnecessary check logic for lang items in HIR typeck
Obvious bugs with `#[no_core]` do not deserve customized recovery logic, since they are bugs we do not expect users to ever encounter, and if users are experimenting with `#[no_core]`, they should really be familiar with the compiler implementation.
These error recoveries are implemented now only where issues have been reported in the past, rather than systematically validating lang items.
See https://github.com/rust-lang/compiler-team/issues/620
> In particular, one-off fixes for particular assumptions about lang items or intrinsics that introduce additional complexity into the compiler are not accepted.
r? Nilstrieb
Revert outdated version of "Add the wasm32-wasi-preview2 target"
An outdated version of #119616 was merged in rollup #120309.
This reverts those changes to enable #119616 to “retain the intended diff” after a rebase.
```@rylev``` has agreed that this would be the cleanest approach with respect to the history.
Unblocks #119616.
r? ```@petrochenkov``` or compiler or libs
Remove various `has_errors` or `err_count` uses
follow up to https://github.com/rust-lang/rust/pull/119895
r? `@nnethercote` since you recently did something similar.
There are so many more of these, but I wanted to get a PR out instead of growing the commit list indefinitely. The commits all work on their own and can be reviewed commit by commit.
Deduplicate more sized errors on call exprs
Change the implicit `Sized` `Obligation` `Span` for call expressions to include the whole expression. This aids the existing deduplication machinery to reduce the number of errors caused by a single unsized expression.
Suppress unhelpful diagnostics for unresolved top level attributes
Fixes#118455, unresolved top level attribute error didn't imported prelude and already have emitted an error, report builtin macro and attributes error by the way, so `check_invalid_crate_level_attr` in can ignore them.
Also fixes#89566, fixes#67107.
r? `@petrochenkov`
The query accept arbitrary DefIds, not just owner DefIds.
The return can be an `Option` because if there are no nodes, then it doesn't matter whether it's due to NonOwner or Phantom.
Also rename the query to `opt_hir_owner_nodes`.
Be more careful about interpreting a label/lifetime as a mistyped char literal.
Currently the parser interprets any label/lifetime in certain positions as a mistyped char literal, on the assumption that the trailing single quote was accidentally omitted. In such cases it gives an error with a suggestion to add the trailing single quote, and then puts the appropriate char literal into the AST. This behaviour was introduced in #101293.
This is reasonable for a case like this:
```
let c = 'a;
```
because `'a'` is a valid char literal. It's less reasonable for a case like this:
```
let c = 'abc;
```
because `'abc'` is not a valid char literal.
Prior to #120329 this could result in some sub-optimal suggestions in error messages, but nothing else. But #120329 changed `LitKind::from_token_lit` to assume that the char/byte/string literals it receives are valid, and to assert if not. This is reasonable because the lexer does not produce invalid char/byte/string literals in general. But in this "interpret label/lifetime as unclosed char literal" case the parser can produce an invalid char literal with contents such as `abc`, which triggers an assertion failure.
This PR changes the parser so it's more cautious about interpreting labels/lifetimes as unclosed char literals.
Fixes#120397.
r? `@compiler-errors`
Fixes footnote handling in rustdoc
Fixes#100638.
You can now declare footnotes like this:
```rust
//! Reference to footnotes A[^1], B[^2] and C[^3].
//!
//! [^1]: Footnote A.
//! [^2]: Footnote B.
//! [^3]: Footnote C.
```
r? `@notriddle`
Move UI issue tests to subdirectories
I've moved issue tests numbered 1920, 3668, 5997, 23302, 32122, 40510, 57741, 71676, and 76077 to relevant better-named subdirectories (tracking issue #73494). The issues were chosen by having the highest number of files per issue.
I adjusted the `ISSUES_ENTRY_LIMIT` because `tidy` was shouting at me.
raw pointer metadata API: data address -> data pointer
A pointer consists of [more than just an address](https://github.com/rust-lang/rfcs/pull/3559), so let's not equate "pointer" and "address" in these docs.
Make the coroutine def id of an async closure the child of the closure def id
Adjust def collection to make the (inner) coroutine returned by an async closure be a def id child of the (outer) closure. This makes it easy to map from coroutine -> closure by using `tcx.parent`, since currently it's not trivial to do this.
only assemble alias bound candidates for rigid aliases
fixes https://github.com/rust-lang/trait-system-refactor-initiative/issues/77
This also causes `<Wrapper<?0> as Trait>::Unwrap: Trait` to always be ambig, as we now normalize the self type before checking whether it is an inference variable.
I cannot think of an approach to the underlying issues here which does not require the "may-define means must-define" restriction for opaque types. Going to go ahead with this and added this restriction to the tracking issue for the new solver to make sure we don't stabilize it without getting types + lang signoff here.
r? `@compiler-errors`
Issue tests numbered 1920, 3668, 5997, 23302, 32122, 40510, 57741, 71676, and 76077 were moved to relevant better-named subdirectories. ISSUES_ENTRY_LIMIT was adjusted to match new number of files and FIXME note was expanded.
The test was using an internal feature which doesn't really matter, but
more importantly, we're now fatally exiting after the duplicate lang
item, so this tests nothing.
Do not attempt to provide an accurate suggestion for `impl Trait`
in bare trait types when linting. Instead, only do the object
safety check when an E0782 is already going to be emitted in the
2021 edition.
Fix#120241.
Borrow check inline const patterns
Add type annotations to MIR so that borrowck can pass constraints from inline constants in patterns to the containing function.
Also enables some inline constant pattern tests that were fixed by the THIR unsafeck stabilization.
cc #76001
Improve handling of expressions in patterns
Closes#112593.
Methodcalls' dots in patterns are silently recovered as commas (e.g. `Foo("".len())` -> `Foo("", len())`) so extra diagnostics are emitted:
```rs
struct Foo(u8, String, u8);
fn bar(foo: Foo) -> bool {
match foo {
Foo(4, "yippee".yeet(), 7) => true,
_ => false
}
}
```
```
error: expected one of `)`, `,`, `...`, `..=`, `..`, or `|`, found `.`
--> main.rs:5:24
|
5 | Foo(4, "yippee".yeet(), 7) => true,
| ^
| |
| expected one of `)`, `,`, `...`, `..=`, `..`, or `|`
| help: missing `,`
error[E0531]: cannot find tuple struct or tuple variant `yeet` in this scope
--> main.rs:5:25
|
5 | Foo(4, "yippee".yeet(), 7) => true,
| ^^^^ not found in this scope
error[E0023]: this pattern has 4 fields, but the corresponding tuple struct has 3 fields
--> main.rs:5:13
|
1 | struct Foo(u8, String, u8);
| -- ------ -- tuple struct has 3 fields
...
5 | Foo(4, "yippee".yeet(), 7) => true,
| ^ ^^^^^^^^ ^^^^^^ ^ expected 3 fields, found 4
error: aborting due to 3 previous errors
```
This PR checks for patterns that ends with a dot and a lowercase ident (as structs/variants should be uppercase):
```
error: expected a pattern, found a method call
--> main.rs:5:16
|
5 | Foo(4, "yippee".yeet(), 7) => true,
| ^^^^^^^^^^^^^^^ method calls are not allowed in patterns
error: aborting due to 1 previous error
```
Also check for expressions:
```rs
fn is_idempotent(x: f32) -> bool {
match x {
x * x => true,
_ => false,
}
}
fn main() {
let mut t: [i32; 5];
let t[0] = 1;
}
```
```
error: expected a pattern, found an expression
--> main.rs:3:9
|
3 | x * x => true,
| ^^^^^ arbitrary expressions are not allowed in patterns
error: expected a pattern, found an expression
--> main.rs:10:9
|
10 | let t[0] = 1;
| ^^^^ arbitrary expressions are not allowed in patterns
```
Would be cool if the compiler could suggest adding a guard for `match`es, but I've no idea how to do it.
---
`@rustbot` label +A-diagnostics +A-parser +A-patterns +C-enhancement
Currently the parser will interpret any label/lifetime in certain
positions as a mistyped char literal, on the assumption that the
trailing single quote was accidentally omitted. This is reasonable for a
something like 'a (because 'a' would be valid) but not reasonable for a
something like 'abc (because 'abc' is not valid).
This commit restricts this behaviour only to labels/lifetimes that would
be valid char literals, via the new `could_be_unclosed_char_literal`
function. The commit also augments the `label-is-actually-char.rs` test
in a couple of ways:
- Adds testing of labels/lifetimes with identifiers longer than one
char, e.g. 'abc.
- Adds a new match with simpler patterns, because the
`recover_unclosed_char` call in `parse_pat_with_range_pat` was not
being exercised (in this test or any other ui tests).
Fixes#120397, an assertion failure, which was caused by this behaviour
in the parser interacting with some new stricter char literal checking
added in #120329.
Error codes are integers, but `String` is used everywhere to represent
them. Gross!
This commit introduces `ErrCode`, an integral newtype for error codes,
replacing `String`. It also introduces a constant for every error code,
e.g. `E0123`, and removes the `error_code!` macro. The constants are
imported wherever used with `use rustc_errors::codes::*`.
With the old code, we have three different ways to specify an error code
at a use point:
```
error_code!(E0123) // macro call
struct_span_code_err!(dcx, span, E0123, "msg"); // bare ident arg to macro call
\#[diag(name, code = "E0123")] // string
struct Diag;
```
With the new code, they all use the `E0123` constant.
```
E0123 // constant
struct_span_code_err!(dcx, span, E0123, "msg"); // constant
\#[diag(name, code = E0123)] // constant
struct Diag;
```
The commit also changes the structure of the error code definitions:
- `rustc_error_codes` now just defines a higher-order macro listing the
used error codes and nothing else.
- Because that's now the only thing in the `rustc_error_codes` crate, I
moved it into the `lib.rs` file and removed the `error_codes.rs` file.
- `rustc_errors` uses that macro to define everything, e.g. the error
code constants and the `DIAGNOSTIC_TABLES`. This is in its new
`codes.rs` file.
llvm: change data layout bug to an error and make it trigger more
Fixes#33446.
Don't skip the inconsistent data layout check for custom LLVMs or non-built-in targets.
With #118708, all targets will have a simple test that would trigger this error if LLVM's data layouts do change - so data layouts would be corrected during the LLVM upgrade. Therefore, with builtin targets, this error won't happen with our LLVM because each target will have been confirmed to work. With non-builtin targets, this error is probably useful to have because you can change the data layout in your target and if it is wrong then that could lead to bugs.
When using a custom LLVM, the same justification makes sense for non-builtin targets as with our LLVM, the user can update their target to match their LLVM and that's probably a good thing to do. However, with a custom LLVM, the user cannot change the builtin target data layouts if they don't match - though given that the compiler's data layout is used for layout computation and a bunch of other things - you could get some bugs because of the mismatch and probably want to know about that. I'm not sure if this is something that people do and is okay, but I doubt it?
`CFG_LLVM_ROOT` was also always set during local development with `download-ci-llvm` so this bug would never trigger locally.
In #33446, two points are raised:
- In the issue itself, changing this from a `bug!` to a proper error is what is suggested, by using `isCompatibleDataLayout` from LLVM, but that function still just does the same thing that we do and check for equality, so I've avoided the additional code necessary to do that FFI call.
- `@Mark-Simulacrum` suggests a different check is necessary to maintain backwards compatibility with old LLVM versions. I don't know how often this comes up, but we can do that with some simple string manipulation + LLVM version checks as happens already for LLVM 17 just above this diff.
Properly recover from trailing attr in body
When encountering an attribute in a body, we try to recover from an attribute on an expression (as opposed to a statement). We need to properly clean up when the attribute is at the end of the body where a tail expression would be.
Fix#118164, fix#118575.
Add the unstable option to reduce the binary size of dynamic library…
# Motivation
The average length of symbol names in the rust standard library is about 100 bytes, while the average length of symbol names in the C++ standard library is about 65 bytes. In some embedded environments where dynamic library are widely used, rust dynamic library symbol name space hash become one of the key bottlenecks of application, Especially when the existing C/C++ module is reconstructed into the rust module.
The unstable option `-Z symbol_mangling_version=hashed` is added to solve the bottleneck caused by too long dynamic library symbol names.
## Test data
The following is a set of test data on the ubuntu 18.04 LTS environment. With this plug-in, the space saving rate of dynamic libraries can reach about 20%.
The test object is the standard library of rust (built based on Xargo), tokio crate, and hyper crate.
The contents of the Cargo.toml file in the construction project of the three dynamic libraries are as follows:
```txt
# Cargo.toml
[profile.release]
panic = "abort"
opt-leve="z"
codegen-units=1
strip=true
debug=true
```
The built dynamic library also removes the `.rustc` segments that are not needed at run time and then compares the size. The detailed data is as follows:
1. libstd.so
> | symbol_mangling_version | size | saving rate |
> | --- | --- | --- |
> | legacy | 804896 ||
> | hashed | 608288 | 0.244 |
> | v0 | 858144 ||
> | hashed | 608288 | 0.291 |
2. libhyper.so
> | symbol_mangling_version(libhyper.so) | symbol_mangling_version(libstd.so) | size | saving rate |
> | --- | --- | --- | --- |
> | legacy | legacy | 866312 ||
> | hashed | legacy | 645128 |0.255|
> | legacy | hashed | 854024 ||
> | hashed | hashed | 632840 |0.259|
When encountering an attribute in a body, we try to recover from an
attribute on an expression (as opposed to a statement). We need to
properly clean up when the attribute is at the end of the body where a
tail expression would be.
Fix#118164.
Classify closure arguments in refutable pattern in argument error
You can call it a function (and people may or may not agree with that), but it's better to just say those are closure arguments instead.
core: add `From<core::ascii::Char>` implementations
Introduce `From<core::ascii::Char>` implementations for all unsigned
numeric types and `char`. This matches the API of `char` type.
Issue: https://github.com/rust-lang/rust/issues/110998
Normalize field types before checking validity
I forgot to normalize field types when checking ADT-like aggregates in the MIR validator.
This normalization is needed due to a crude check for opaque types in `mir_assign_valid_types` which prevents opaque type cycles -- if we pass in an unnormalized type, we may not detect that the destination type is an opaque, and therefore will call `type_of(opaque)` later on, which causes a cycle error -> ICE.
Fixes#120253
Rename `pointer` field on `Pin`
A few days ago, I was helping another user create a self-referential type using `PhantomPinned`. However, I noticed an odd behavior when I tried to access one of the type's fields via `Pin`'s `Deref` impl:
```rust
use std::{marker::PhantomPinned, ptr};
struct Pinned {
data: i32,
pointer: *const i32,
_pin: PhantomPinned,
}
fn main() {
let mut b = Box::pin(Pinned {
data: 42,
pointer: ptr::null(),
_pin: PhantomPinned,
});
{
let pinned = unsafe { b.as_mut().get_unchecked_mut() };
pinned.pointer = &pinned.data;
}
println!("{}", unsafe { *b.pointer });
}
```
```rust
error[E0658]: use of unstable library feature 'unsafe_pin_internals'
--> <source>:19:30
|
19 | println!("{}", unsafe { *b.pointer });
| ^^^^^^^^^
error[E0277]: `Pinned` doesn't implement `std::fmt::Display`
--> <source>:19:20
|
19 | println!("{}", unsafe { *b.pointer });
| ^^^^^^^^^^^^^^^^^^^^^ `Pinned` cannot be formatted with the default formatter
|
= help: the trait `std::fmt::Display` is not implemented for `Pinned`
= note: in format strings you may be able to use `{:?}` (or {:#?} for pretty-print) instead
= note: this error originates in the macro `$crate::format_args_nl` which comes from the expansion of the macro `println` (in Nightly builds, run with -Z macro-backtrace for more info)
```
Since the user named their field `pointer`, it conflicts with the `pointer` field on `Pin`, which is public but unstable since Rust 1.60.0 with #93176. On versions from 1.33.0 to 1.59.0, where the field on `Pin` is private, this program compiles and prints `42` as expected.
To avoid this confusing behavior, this PR renames `pointer` to `__pointer`, so that it's less likely to conflict with a `pointer` field on the underlying type, as accessed through the `Deref` impl. This is technically a breaking change for anyone who names their field `__pointer` on the inner type; if this is undesirable, it could be renamed to something more longwinded. It's also a nightly breaking change for any external users of `unsafe_pin_internals`.
Don't fire `OPAQUE_HIDDEN_INFERRED_BOUND` on sized return of AFIT
Conceptually, we should probably not fire `OPAQUE_HIDDEN_INFERRED_BOUND` for methods like:
```
trait Foo { async fn bar() -> Self; }
```
Even though we technically cannot prove that `Self: Sized`, which is one of the item bounds of the `Output` type in the `-> impl Future<Output = Sized>` from the async desugaring.
This is somewhat justifiable along the same lines as how we allow regular methods to return `-> Self` even though `Self` isn't sized.
Fixes#113538
(side-note: some days i wonder if we should just remove the `OPAQUE_HIDDEN_INFERRED_BOUND` lint... it does make me sad that we have non-well-formed types in signatures, though.)
interpret: project_downcast: do not ICE for uninhabited variants
Fixes https://github.com/rust-lang/rust/issues/120337
This assertion was already under discussion for a bit; I think the [example](https://github.com/rust-lang/rust/issues/120337#issuecomment-1911076292) `@tmiasko` found is the final nail in the coffin. One could argue maybe MIR building should read the discriminant before projecting, but even then MIR optimizations should be allowed to remove that read, so the downcast should still not ICE. Maybe the downcast should be UB, but in this example UB already arises earlier when a value of type `E` is constructed.
r? `@oli-obk`
Don't manually resolve async closures in `rustc_resolve`
There's a comment here that talks about doing this "[so] closure [args] are detected as upvars rather than normal closure arg usages", but we do upvar analysis on the HIR now:
cd6d8f2a04/compiler/rustc_passes/src/upvars.rs (L21-L29)
Removing this ad-hoc logic makes it so that `async |x: &str|` now introduces an implicit binder, like regular closures.
r? ```@oli-obk```
Split assembly tests for ELF and MachO
On ELF, the text section is opened with ".text", on MachO with ".section __TEXT,__text".
Previously, on ELF this test was actually matching a GNU note section, which is no longer emitted on Solaris starting with LLVM 18.
Fixes https://github.com/rust-lang/rust/issues/120105.
r? ```@davidtwco```
Add the `min_exhaustive_patterns` feature gate
## Motivation
Pattern-matching on empty types is tricky around unsafe code. For that reason, current stable rust conservatively requires arms for empty types in all but the simplest case. It has long been the intention to allow omitting empty arms when it's safe to do so. The [`exhaustive_patterns`](https://github.com/rust-lang/rust/issues/51085) feature allows the omission of all empty arms, but hasn't been stabilized because that was deemed dangerous around unsafe code.
## Proposal
This feature aims to stabilize an uncontroversial subset of exhaustive_patterns. Namely: when `min_exhaustive_patterns` is enabled and the data we're matching on is guaranteed to be valid by rust's operational semantics, then we allow empty arms to be omitted. E.g.:
```rust
let x: Result<T, !> = foo();
match x { // ok
Ok(y) => ...,
}
let Ok(y) = x; // ok
```
If the place is not guaranteed to hold valid data (namely ptr dereferences, ref dereferences (conservatively) and union field accesses), then we keep stable behavior i.e. we (usually) require arms for the empty cases.
```rust
unsafe {
let ptr: *const Result<u32, !> = ...;
match *ptr {
Ok(x) => { ... }
Err(_) => { ... } // still required
}
}
let foo: Result<u32, &!> = ...;
match foo {
Ok(x) => { ... }
Err(&_) => { ... } // still required because of the dereference
}
unsafe {
let ptr: *const ! = ...;
match *ptr {} // already allowed on stable
}
```
Note that we conservatively consider that a valid reference can point to invalid data, hence we don't allow arms of type `&!` and similar cases to be omitted. This could eventually change depending on [opsem decisions](https://github.com/rust-lang/unsafe-code-guidelines/issues/413). Whenever opsem is undecided on a case, we conservatively keep today's stable behavior.
I proposed this behavior in the [`never_patterns`](https://github.com/rust-lang/rust/issues/118155) feature gate but it makes sense on its own and could be stabilized more quickly. The two proposals nicely complement each other.
## Unresolved Questions
Part of the question is whether this requires an RFC. I'd argue this doesn't need one since there is no design question beyond the intent to omit unreachable patterns, but I'm aware the problem can be framed in ways that require design (I'm thinking of the [original never patterns proposal](https://smallcultfollowing.com/babysteps/blog/2018/08/13/never-patterns-exhaustive-matching-and-uninhabited-types-oh-my/), which would frame this behavior as "auto-nevering" happening).
EDIT: I initially proposed a future-compatibility lint as part of this feature, I don't anymore.
remove StructuralEq trait
The documentation given for the trait is outdated: *all* function pointers implement `PartialEq` and `Eq` these days. So the `StructuralEq` trait doesn't really seem to have any reason to exist any more.
One side-effect of this PR is that we allow matching on some consts that do not implement `Eq`. However, we already allowed matching on floats and consts containing floats, so this is not new, it is just allowed in more cases now. IMO it makes no sense at all to allow float matching but also sometimes require an `Eq` instance. If we want to require `Eq` we should adjust https://github.com/rust-lang/rust/pull/115893 to check for `Eq`, and rule out float matching for good.
Fixes https://github.com/rust-lang/rust/issues/115881
Remove coroutine info when building coroutine drop body
Coroutine drop shims are not themselves coroutines, so erase the "`coroutine`" field from the body so that helper fns like `yield_ty` and `coroutine_kind` properly return `None` for the drop shim.
Clean up after clone3 removal from pidfd code (docs and tests)
https://github.com/rust-lang/rust/pull/113939 removed clone3 from pidfd code. This patchset does necessary clean up: fixes docs and tests
On ELF, the text section is opened with ".text", on MachO with
".section __TEXT,__text".
Previously, on ELF this test was actually matching a GNU note
section, which is no longer emitted on Solaris starting with
LLVM 18.
Fixes https://github.com/rust-lang/rust/issues/120105.
On E0308 involving `dyn Trait`, mention trait objects
When encountering a type mismatch error involving `dyn Trait`, mention the existence of boxed trait objects if the other type involved implements `Trait`.
Fix#102629.
Remove `track_errors` entirely
follow up to https://github.com/rust-lang/rust/pull/119869
r? `@matthewjasper`
There are some diagnostic changes adding new diagnostics or not emitting some anymore. We can improve upon that in follow-up work imo.
Provide more context on recursive `impl` evaluation overflow
When an associated type `Self::Assoc` is part of a `where` clause, we end up unable to evaluate the requirement and emit a E0275.
We now point at the associated type if specified in the `impl`. If so, we also suggest using that type instead of `Self::Assoc`. Otherwise, we explain that these are not allowed.
```
error[E0275]: overflow evaluating the requirement `<(T,) as Grault>::A == _`
--> $DIR/impl-wf-cycle-1.rs:15:1
|
LL | / impl<T: Grault> Grault for (T,)
LL | |
LL | | where
LL | | Self::A: Baz,
LL | | Self::B: Fiz,
| |_________________^
LL | {
LL | type A = ();
| ------ associated type `<(T,) as Grault>::A` is specified here
|
note: required for `(T,)` to implement `Grault`
--> $DIR/impl-wf-cycle-1.rs:15:17
|
LL | impl<T: Grault> Grault for (T,)
| ^^^^^^ ^^^^
...
LL | Self::A: Baz,
| --- unsatisfied trait bound introduced here
= note: 1 redundant requirement hidden
= note: required for `(T,)` to implement `Grault`
help: associated type for the current `impl` cannot be restricted in `where` clauses, remove this bound
|
LL - Self::A: Baz,
|
```
```
error[E0275]: overflow evaluating the requirement `<T as B>::Type == <T as B>::Type`
--> $DIR/impl-wf-cycle-3.rs:7:1
|
LL | / impl<T> B for T
LL | | where
LL | | T: A<Self::Type>,
| |_____________________^
LL | {
LL | type Type = bool;
| --------- associated type `<T as B>::Type` is specified here
|
note: required for `T` to implement `B`
--> $DIR/impl-wf-cycle-3.rs:7:9
|
LL | impl<T> B for T
| ^ ^
LL | where
LL | T: A<Self::Type>,
| ------------- unsatisfied trait bound introduced here
help: replace the associated type with the type specified in this `impl`
|
LL | T: A<bool>,
| ~~~~
```
```
error[E0275]: overflow evaluating the requirement `<T as Filter>::ToMatch == <T as Filter>::ToMatch`
--> $DIR/impl-wf-cycle-4.rs:5:1
|
LL | / impl<T> Filter for T
LL | | where
LL | | T: Fn(Self::ToMatch),
| |_________________________^
|
note: required for `T` to implement `Filter`
--> $DIR/impl-wf-cycle-4.rs:5:9
|
LL | impl<T> Filter for T
| ^^^^^^ ^
LL | where
LL | T: Fn(Self::ToMatch),
| ----------------- unsatisfied trait bound introduced here
note: associated types for the current `impl` cannot be restricted in `where` clauses
--> $DIR/impl-wf-cycle-4.rs:7:11
|
LL | T: Fn(Self::ToMatch),
| ^^^^^^^^^^^^^
```
Fix#116925
Add `AsyncFn` family of traits
I'm proposing to add a new family of `async`hronous `Fn`-like traits to the standard library for experimentation purposes.
## Why do we need new traits?
On the user side, it is useful to be able to express `AsyncFn` trait bounds natively via the parenthesized sugar syntax, i.e. `x: impl AsyncFn(&str) -> String` when experimenting with async-closure code.
This also does not preclude `AsyncFn` becoming something else like a trait alias if a more fundamental desugaring (which can take many[^1] different[^2] forms) comes around. I think we should be able to play around with `AsyncFn` well before that, though.
I'm also not proposing stabilization of these trait names any time soon (we may even want to instead express them via new syntax, like `async Fn() -> ..`), but I also don't think we need to introduce an obtuse bikeshedding name, since `AsyncFn` just makes sense.
## The lending problem: why not add a more fundamental primitive of `LendingFn`/`LendingFnMut`?
Firstly, for `async` closures to be as flexible as possible, they must be allowed to return futures which borrow from the async closure's captures. This can be done by introducing `LendingFn`/`LendingFnMut` traits, or (equivalently) by adding a new generic associated type to `FnMut` which allows the return type to capture lifetimes from the `&mut self` argument of the trait. This was proposed in one of [Niko's blog posts](https://smallcultfollowing.com/babysteps/blog/2023/05/09/giving-lending-and-async-closures/).
Upon further experimentation, for the purposes of closure type- and borrow-checking, I've come to the conclusion that it's significantly harder to teach the compiler how to handle *general* lending closures which may borrow from their captures. This is, because unlike `Fn`/`FnMut`, the `LendingFn`/`LendingFnMut` traits don't form a simple "inheritance" hierarchy whose top trait is `FnOnce`.
```mermaid
flowchart LR
Fn
FnMut
FnOnce
LendingFn
LendingFnMut
Fn -- isa --> FnMut
FnMut -- isa --> FnOnce
LendingFn -- isa --> LendingFnMut
Fn -- isa --> LendingFn
FnMut -- isa --> LendingFnMut
```
For example:
```
fn main() {
let s = String::from("hello, world");
let f = move || &s;
let x = f(); // This borrows `f` for some lifetime `'1` and returns `&'1 String`.
```
That trait hierarchy means that in general for "lending" closures, like `f` above, there's not really a meaningful return type for `<typeof(f) as FnOnce>::Output` -- it can't return `&'static str`, for example.
### Special-casing this problem:
By splitting out these traits manually, and making sure that each trait has its own associated future type, we side-step the issue of having to answer the questions of a general `LendingFn`/`LendingFnMut` implementation, since the compiler knows how to generate built-in implementations for first-class constructs like async closures, including the required future types for the (by-move) `AsyncFnOnce` and (by-ref) `AsyncFnMut`/`AsyncFn` trait implementations.
[^1]: For example, with trait transformers, we may eventually be able to write: `trait AsyncFn = async Fn;`
[^2]: For example, via the introduction of a more fundamental "`LendingFn`" trait, plus a [special desugaring with augmented trait aliases](https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/Lending.20closures.20and.20Fn*.28.29.20-.3E.20impl.20Trait/near/408471480).
Replacement of #114390: Add new intrinsic `is_var_statically_known` and optimize pow for powers of two
This adds a new intrinsic `is_val_statically_known` that lowers to [``@llvm.is.constant.*`](https://llvm.org/docs/LangRef.html#llvm-is-constant-intrinsic).` It also applies the intrinsic in the int_pow methods to recognize and optimize the idiom `2isize.pow(x)`. See #114390 for more discussion.
While I have extended the scope of the power of two optimization from #114390, I haven't added any new uses for the intrinsic. That can be done in later pull requests.
Note: When testing or using the library, be sure to use `--stage 1` or higher. Otherwise, the intrinsic will be a noop and the doctests will be skipped. If you are trying out edits, you may be interested in [`--keep-stage 0`](https://rustc-dev-guide.rust-lang.org/building/suggested.html#faster-builds-with---keep-stage).
Fixes#47234Resolves#114390
`@Centri3`