Currently some `Allocation`s are interned, some are not, and it's very
hard to tell at a use point which is which.
This commit introduces `ConstAllocation` for the known-interned ones,
which makes the division much clearer. `ConstAllocation::inner()` is
used to get the underlying `Allocation`.
In some places it's natural to use an `Allocation`, in some it's natural
to use a `ConstAllocation`, and in some places there's no clear choice.
I've tried to make things look as nice as possible, while generally
favouring `ConstAllocation`, which is the type that embodies more
information. This does require quite a few calls to `inner()`.
The commit also tweaks how `PartialOrd` works for `Interned`. The
previous code was too clever by half, building on `T: Ord` to make the
code shorter. That caused problems with deriving `PartialOrd` and `Ord`
for `ConstAllocation`, so I changed it to build on `T: PartialOrd`,
which is slightly more verbose but much more standard and avoided the
problems.
Ensure stability directives are checked in all cases
Split off #93017
Stability and deprecation were not checked in all cases, for instance if a type error happened.
This PR moves the check earlier in the pipeline to ensure the errors are emitted in all cases.
r? `@lcnr`
improve comments for `simplify_type`
Should now correctly describe what's going on. Experimented with checking the invariant for projections
but that ended up requiring fairly involved changes. I assume that it is not possible to get unsoundness here,
at least for now and I can pretty much guarantee that it's impossible to trigger it by accident.
r? `````@nikomatsakis````` cc #92721
Implementation of the `expect` attribute (RFC 2383)
This is an implementation of the `expect` attribute as described in [RFC-2383](https://rust-lang.github.io/rfcs/2383-lint-reasons.html). The attribute allows the suppression of lint message by expecting them. Unfulfilled lint expectations (meaning no expected lint was caught) will emit the `unfulfilled_lint_expectations` lint at the `expect` attribute.
### Example
#### input
```rs
// required feature flag
#![feature(lint_reasons)]
#[expect(unused_mut)] // Will warn about an unfulfilled expectation
#[expect(unused_variables)] // Will be fulfilled by x
fn main() {
let x = 0;
}
```
#### output
```txt
warning: this lint expectation is unfulfilled
--> $DIR/trigger_lint.rs:3:1
|
LL | #[expect(unused_mut)] // Will warn about an unfulfilled expectation
| ^^^^^^^^^^
|
= note: `#[warn(unfulfilled_lint_expectations)]` on by default
```
### Implementation
This implementation introduces `Expect` as a new lint level for diagnostics, which have been expected. All lint expectations marked via the `expect` attribute are collected in the [`LintLevelsBuilder`] and assigned an ID that is stored in the new lint level. The `LintLevelsBuilder` stores all found expectations and the data needed to emit the `unfulfilled_lint_expectations` in the [`LintLevelsMap`] which is the result of the [`lint_levels()`] query.
The [`rustc_errors::HandlerInner`] is the central error handler in rustc and handles the emission of all diagnostics. Lint message with the level `Expect` are suppressed during this emission, while the expectation ID is stored in a set which marks them as fulfilled. The last step is then so simply check if all expectations collected by the [`LintLevelsBuilder`] in the [`LintLevelsMap`] have been marked as fulfilled in the [`rustc_errors::HandlerInner`]. Otherwise, a new lint message will be emitted.
The implementation of the `LintExpectationId` required some special handling to make it stable between sessions. Lints can be emitted during [`EarlyLintPass`]es. At this stage, it's not possible to create a stable identifier. The level instead stores an unstable identifier, which is later converted to a stable `LintExpectationId`.
### Followup TO-DOs
All open TO-DOs have been marked with `FIXME` comments in the code. This is the combined list of them:
* [ ] The current implementation doesn't cover cases where the `unfulfilled_lint_expectations` lint is actually expected by another `expect` attribute.
* This should be easily possible, but I wanted to get some feedback before putting more work into this.
* This could also be done in a new PR to not add to much more code to this one
* [ ] Update unstable documentation to reflect this change.
* [ ] Update unstable expectation ids in [`HandlerInner::stashed_diagnostics`](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/struct.HandlerInner.html#structfield.stashed_diagnostics)
### Open questions
I also have a few open questions where I would like to get feedback on:
1. The RFC discussion included a suggestion to change the `expect` attribute to something else. (Initiated by `@Ixrec` [here](https://github.com/rust-lang/rfcs/pull/2383#issuecomment-378424091), suggestion from `@scottmcm` to use `#[should_lint(...)]` [here](https://github.com/rust-lang/rfcs/pull/2383#issuecomment-378648877)). No real conclusion was drawn on that point from my understanding. Is this still open for discussion, or was this discarded with the merge of the RFC?
2. How should the expect attribute deal with the new `force-warn` lint level?
---
This approach was inspired by a discussion with `@LeSeulArtichaut.`
RFC tracking issue: #54503
Mentoring/Implementation issue: #85549
[`LintLevelsBuilder`]: https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/levels/struct.LintLevelsBuilder.html
[`LintLevelsMap`]: https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/lint/struct.LintLevelMap.html
[`lint_levels()`]: https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/context/struct.TyCtxt.html#method.lint_levels
[`rustc_errors::HandlerInner`]: https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/struct.HandlerInner.html
[`EarlyLintPass`]: https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/trait.EarlyLintPass.html
Miri/CTFE: properly treat overflow in (signed) division/rem as UB
To my surprise, it looks like LLVM treats overflow of signed div/rem as UB. From what I can tell, MIR `Div`/`Rem` directly lowers to the corresponding LLVM operation, so to make that correct we also have to consider these overflows UB in the CTFE/Miri interpreter engine.
r? `@oli-obk`
Restore the local filter on mono item sorting
In `CodegenUnit::items_in_deterministic_order`, there's a comment that
only local HirIds should be taken into account, but #90408 removed the
`as_local` call that sets others to None. Restoring that check fixes the
s390x hangs seen in [RHBZ 2058803].
[RHBZ 2058803]: https://bugzilla.redhat.com/show_bug.cgi?id=2058803
Adt copy suggestions
Previously we've only suggested adding `Copy` bounds when the type being moved/copied is a type parameter (generic). With this PR we also suggest adding bounds when a type
- Can be copy
- All predicates that need to be satisfied for that are based on type params
i.e. we will suggest `T: Copy` for `Option<T>`, but won't suggest anything for `Option<String>`.
An example:
```rust
fn duplicate<T>(t: Option<T>) -> (Option<T>, Option<T>) {
(t, t)
}
```
New error (current compiler doesn't provide `help`:):
```text
error[E0382]: use of moved value: `t`
--> t.rs:2:9
|
1 | fn duplicate<T>(t: Option<T>) -> (Option<T>, Option<T>) {
| - move occurs because `t` has type `Option<T>`, which does not implement the `Copy` trait
2 | (t, t)
| - ^ value used here after move
| |
| value moved here
|
help: consider restricting type parameter `T`
|
1 | fn duplicate<T: Copy>(t: Option<T>) -> (Option<T>, Option<T>) {
| ++++++
```
Fixes#93623
r? ``````````@estebank``````````
``````````@rustbot`````````` label +A-diagnostics +A-suggestion-diagnostics +C-enhancement
----
I'm not at all sure if this is the right implementation for this kind of suggestion, but it seems to work :')
Direct users towards using Rust target feature names in CLI
This PR consists of a couple of changes on how we handle target features.
In particular there is a bug-fix wherein we avoid passing through features that aren't prefixed by `+` or `-` to LLVM. These appear to be causing LLVM to assert, which is pretty poor a behaviour (and also makes it pretty clear we expect feature names to be prefixed).
The other commit, I anticipate to be somewhat more controversial is outputting a warning when users specify a LLVM-specific, or otherwise unknown, feature name on the CLI. In those situations we request users to either replace it with a known Rust feature name (e.g. `bmi` -> `bmi1`) or file a feature request. I've a couple motivations for this: first of all, if users are specifying these features on the command line, I'm pretty confident there is also a need for these features to be usable via `#[cfg(target_feature)]` machinery. And second, we're growing a fair number of backends recently and having ability to provide some sort of unified-ish interface in this place seems pretty useful to me.
Sponsored by: standard.ai
In `CodegenUnit::items_in_deterministic_order`, there's a comment that
only local HirIds should be taken into account, but #90408 removed the
`as_local` call that sets others to None. Restoring that check fixes the
s390x hangs seen in [RHBZ 2058803].
[RHBZ 2058803]: https://bugzilla.redhat.com/show_bug.cgi?id=2058803
Add `rustc_middle::ty::suggest_constraining_type_params` that suggests
adding multiple constraints.
`suggest_constraining_type_param` now just forwards params to this new
function.
Caching the stable hash of Ty within itself
Instead of computing stable hashes on types as needed, we compute it during interning.
This way we can, when a hash is requested, just hash that hash, which is significantly faster than traversing the type itself.
We only do this for incremental for now, as incremental is the only frequent user of stable hashing.
As a next step we can try out
* moving the hash and TypeFlags to Interner, so projections and regions get the same benefit (tho regions are not nested, so maybe that's not a good idea? Would be nice for dedup tho)
* start comparing types via their stable hash instead of their address?
Apply noundef attribute to all scalar types which do not permit raw init
Beyond `&`/`&mut`/`Box`, this covers `char`, enum discriminants, `NonZero*`, etc.
All such types currently cause a Miri error if left uninitialized,
and an `invalid_value` lint in cases like `mem::uninitialized::<char>()`.
Note that this _does not_ change whether or not it is UB for `u64` (or
other integer types with no invalid values) to be undef.
Fixes (partially) #74378.
r? `@ghost` (blocked on #94127)
`@rustbot` label S-blocked
Avoid query cache sharding code in single-threaded mode
In non-parallel compilers, this is just adding needless overhead at compilation time (since there is only one shard statically anyway). This amounts to roughly ~10 seconds reduction in bootstrap time, with overall neutral (some wins, some losses) performance results.
Parallel compiler performance should be largely unaffected by this PR; sharding is kept there.
Beyond `&`/`&mut`/`Box`, this covers `char`, discriminants, `NonZero*`, etc.
All such types currently cause a Miri error if left uninitialized,
and an `invalid_value` lint in cases like `mem::uninitialized::<char>()`
Note that this _does not_ change whether or not it is UB for `u64` (or
other integer types with no invalid values) to be undef.
fix a message
implement a rustfix-applicable suggestion
implement `suggest_floating_point_literal`
add `ObligationCauseCode::BinOp`
remove duplicate code
fix function names in uitests
use `Diagnostic` instead of `DiagnosticBuilder`
Print `ParamTy` and `ParamConst` instead of displaying them
Display for `ParamTy` and `ParamConst` is implemented in terms of print.
Using print avoids creating a new `FmtPrinter` just to display the
parameter name.
r? `@Mark-Simulacrum`
Remove in band lifetimes
As discussed in t-lang backlog bonanza, the `in_band_lifetimes` FCP closed in favor for the feature not being stabilized. This PR removes `#![feature(in_band_lifetimes)]` in its entirety.
Let me know if this PR is too hasty, and if we should instead do something intermediate for deprecate the feature first.
r? `@scottmcm` (or feel free to reassign, just saw your last comment on #44524)
Closes#44524
Use undef for (some) partially-uninit constants
There needs to be some limit to avoid perf regressions on large arrays
with undef in each element (see comment in the code).
Fixes: #84565
Original PR: #83698
Depends on LLVM 14: #93577
Convert `newtype_index` to a proc macro
The `macro_rules!` implementation was becomng excessively complicated,
and difficult to modify. The new proc macro implementation should make
it much easier to add new features (e.g. skipping certain `#[derive]`s)
rustc_errors: let `DiagnosticBuilder::emit` return a "guarantee of emission".
That is, `DiagnosticBuilder` is now generic over the return type of `.emit()`, so we'll now have:
* `DiagnosticBuilder<ErrorReported>` for error (incl. fatal/bug) diagnostics
* can only be created via a `const L: Level`-generic constructor, that limits allowed variants via a `where` clause, so not even `rustc_errors` can accidentally bypass this limitation
* asserts `diagnostic.is_error()` on emission, just in case the construction restriction was bypassed (e.g. by replacing the whole `Diagnostic` inside `DiagnosticBuilder`)
* `.emit()` returns `ErrorReported`, as a "proof" token that `.emit()` was called
(though note that this isn't a real guarantee until after completing the work on
#69426)
* `DiagnosticBuilder<()>` for everything else (warnings, notes, etc.)
* can also be obtained from other `DiagnosticBuilder`s by calling `.forget_guarantee()`
This PR is a companion to other ongoing work, namely:
* #69426
and it's ongoing implementation:
#93222
the API changes in this PR are needed to get statically-checked "only errors produce `ErrorReported` from `.emit()`", but doesn't itself provide any really strong guarantees without those other `ErrorReported` changes
* #93244
would make the choices of API changes (esp. naming) in this PR fit better overall
In order to be able to let `.emit()` return anything trustable, several changes had to be made:
* `Diagnostic`'s `level` field is now private to `rustc_errors`, to disallow arbitrary "downgrade"s from "some kind of error" to "warning" (or anything else that doesn't cause compilation to fail)
* it's still possible to replace the whole `Diagnostic` inside the `DiagnosticBuilder`, sadly, that's harder to fix, but it's unlikely enough that we can paper over it with asserts on `.emit()`
* `.cancel()` now consumes `DiagnosticBuilder`, preventing `.emit()` calls on a cancelled diagnostic
* it's also now done internally, through `DiagnosticBuilder`-private state, instead of having a `Level::Cancelled` variant that can be read (or worse, written) by the user
* this removes a hazard of calling `.cancel()` on an error then continuing to attach details to it, and even expect to be able to `.emit()` it
* warnings were switched to *only* `can_emit_warnings` on emission (instead of pre-cancelling early)
* `struct_dummy` was removed (as it relied on a pre-`Cancelled` `Diagnostic`)
* since `.emit()` doesn't consume the `DiagnosticBuilder` <sub>(I tried and gave up, it's much more work than this PR)</sub>,
we have to make `.emit()` idempotent wrt the guarantees it returns
* thankfully, `err.emit(); err.emit();` can return `ErrorReported` both times, as the second `.emit()` call has no side-effects *only* because the first one did do the appropriate emission
* `&mut Diagnostic` is now used in a lot of function signatures, which used to take `&mut DiagnosticBuilder` (in the interest of not having to make those functions generic)
* the APIs were already mostly identical, allowing for low-effort porting to this new setup
* only some of the suggestion methods needed some rework, to have the extra `DiagnosticBuilder` functionality on the `Diagnostic` methods themselves (that change is also present in #93259)
* `.emit()`/`.cancel()` aren't available, but IMO calling them from an "error decorator/annotator" function isn't a good practice, and can lead to strange behavior (from the caller's perspective)
* `.downgrade_to_delayed_bug()` was added, letting you convert any `.is_error()` diagnostic into a `delay_span_bug` one (which works because in both cases the guarantees available are the same)
This PR should ideally be reviewed commit-by-commit, since there is a lot of fallout in each.
r? `@estebank` cc `@Manishearth` `@nikomatsakis` `@mark-i-m`
These links never worked, but the lint was suppressed due to the fact
that the span was pointing into the macro. With the new macro
implementation, the span now points directly to the doc comment in the
macro invocation, so it's no longer suppressed.
Always format to internal String in FmtPrinter
This avoids monomorphizing for different parameters, decreasing generic code
instantiated downstream from rustc_middle -- locally seeing 7% unoptimized LLVM IR
line wins on rustc_borrowck, for example.
We likely can't/shouldn't get rid of the Result-ness on most functions, though some
further cleanup avoiding fmt::Error where we now know it won't occur may be possible,
though somewhat painful -- fmt::Write is a pretty annoying API to work with in practice
when you're trying to use it infallibly.