Extend format arg help for simple tuple index access expression
The help is only applicable for simple field access `a.b` and (with this PR) simple tuple index access expressions `a.0`.
Closes#122535.
Fix representation when printing abstract consts
Previously, when printing a const generic expr, it would only display it as `{{const expr}}`. This allows for a more legible representation when printing these out.
I also zipped the types with their constants for abstract consts that contain function calls when using type annotations, eg: `foo(S: usize, true: bool) -> usize` insteaad of `foo(S, true): fn(usize, bool) -> usize` for conciseness.
clean up `Sized` checking
This PR cleans up `sized_constraint` and related functions to make them simpler and faster. This should not make more or less code compile, but it can change error output in some rare cases.
## enums and unions are `Sized`, even if they are not WF
The previous code has some special handling for enums, which made them sized if and only if the last field of each variant is sized. For example given this definition (which is not WF)
```rust
enum E<T1: ?Sized, T2: ?Sized, U1: ?Sized, U2: ?Sized> {
A(T1, T2),
B(U1, U2),
}
```
the enum was sized if and only if `T2` and `U2` are sized, while `T1` and `T2` were ignored for `Sized` checking. After this PR this enum will always be sized.
Unsized enums are not a thing in Rust and removing this special case allows us to return an `Option<Ty>` from `sized_constraint`, rather than a `List<Ty>`.
Similarly, the old code made an union defined like this
```rust
union Union<T: ?Sized, U: ?Sized> {
head: T,
tail: U,
}
```
sized if and only if `U` is sized, completely ignoring `T`. This just makes no sense at all and now this union is always sized.
## apply the "perf hack" to all (non-error) types, instead of just type parameters
This "perf hack" skips evaluating `sized_constraint(adt): Sized` if `sized_constraint(adt): Sized` exactly matches a predicate defined on `adt`, for example:
```rust
// `Foo<T>: Sized` iff `T: Sized`, but we know `T: Sized` from a predicate of `Foo`
struct Foo<T /*: Sized */>(T);
```
Previously this was only applied to type parameters and now it is applied to every type. This means that for example this type is now always sized:
```rust
// Note that this definition is WF, but the type `S<T>` not WF in the global/empty ParamEnv
struct S<T>([T]) where [T]: Sized;
```
I don't anticipate this to affect compile time of any real-world program, but it makes the code a bit nicer and it also makes error messages a bit more consistent if someone does write such a cursed type.
## tuples are sized if the last type is sized
The old solver already has this behavior and this PR also implements it for the new solver and `is_trivially_sized`. This makes it so that tuples work more like a struct defined like this:
```rust
struct TupleN<T1, T2, /* ... */ Tn: ?Sized>(T1, T2, /* ... */ Tn);
```
This might improve the compile time of programs with large tuples a little, but is mostly also a consistency fix.
## `is_trivially_sized` for more types
This function is used post-typeck code (borrowck, const eval, codegen) to skip evaluating `T: Sized` in some cases. It will now return `true` in more cases, most notably `UnsafeCell<T>` and `ManuallyDrop<T>` where `T.is_trivially_sized`.
I'm anticipating that this change will improve compile time for some real world programs.
Stabilize associated type bounds (RFC 2289)
This PR stabilizes associated type bounds, which were laid out in [RFC 2289]. This gives us a shorthand to express nested type bounds that would otherwise need to be expressed with nested `impl Trait` or broken into several `where` clauses.
### What are we stabilizing?
We're stabilizing the associated item bounds syntax, which allows us to put bounds in associated type position within other bounds, i.e. `T: Trait<Assoc: Bounds...>`. See [RFC 2289] for motivation.
In all position, the associated type bound syntax expands into a set of two (or more) bounds, and never anything else (see "How does this differ[...]" section for more info).
Associated type bounds are stabilized in four positions:
* **`where` clauses (and APIT)** - This is equivalent to breaking up the bound into two (or more) `where` clauses. For example, `where T: Trait<Assoc: Bound>` is equivalent to `where T: Trait, <T as Trait>::Assoc: Bound`.
* **Supertraits** - Similar to above, `trait CopyIterator: Iterator<Item: Copy> {}`. This is almost equivalent to breaking up the bound into two (or more) `where` clauses; however, the bound on the associated item is implied whenever the trait is used. See #112573/#112629.
* **Associated type item bounds** - This allows constraining the *nested* rigid projections that are associated with a trait's associated types. e.g. `trait Trait { type Assoc: Trait2<Assoc2: Copy>; }`.
* **opaque item bounds (RPIT, TAIT)** - This allows constraining associated types that are associated with the opaque without having to *name* the opaque. For example, `impl Iterator<Item: Copy>` defines an iterator whose item is `Copy` without having to actually name that item bound.
The latter three are not expressible in surface Rust (though for associated type item bounds, this will change in #120752, which I don't believe should block this PR), so this does represent a slight expansion of what can be expressed in trait bounds.
### How does this differ from the RFC?
Compared to the RFC, the current implementation *always* desugars associated type bounds to sets of `ty::Clause`s internally. Specifically, it does *not* introduce a position-dependent desugaring as laid out in [RFC 2289], and in particular:
* It does *not* desugar to anonymous associated items in associated type item bounds.
* It does *not* desugar to nested RPITs in RPIT bounds, nor nested TAITs in TAIT bounds.
This position-dependent desugaring laid out in the RFC existed simply to side-step limitations of the trait solver, which have mostly been fixed in #120584. The desugaring laid out in the RFC also added unnecessary complication to the design of the feature, and introduces its own limitations to, for example:
* Conditionally lowering to nested `impl Trait` in certain positions such as RPIT and TAIT means that we inherit the limitations of RPIT/TAIT, namely lack of support for higher-ranked opaque inference. See this code example: https://github.com/rust-lang/rust/pull/120752#issuecomment-1979412531.
* Introducing anonymous associated types makes traits no longer object safe, since anonymous associated types are not nameable, and all associated types must be named in `dyn` types.
This last point motivates why this PR is *not* stabilizing support for associated type bounds in `dyn` types, e.g, `dyn Assoc<Item: Bound>`. Why? Because `dyn` types need to have *concrete* types for all associated items, this would necessitate a distinct lowering for associated type bounds, which seems both complicated and unnecessary compared to just requiring the user to write `impl Trait` themselves. See #120719.
### Implementation history:
Limited to the significant behavioral changes and fixes and relevant PRs, ping me if I left something out--
* #57428
* #108063
* #110512
* #112629
* #120719
* #120584Closes#52662
[RFC 2289]: https://rust-lang.github.io/rfcs/2289-associated-type-bounds.html
`NormalizesTo`: return nested goals to caller
Fixes the regression of `paperclip-core`. see https://hackmd.io/IsVAafiOTAaPIFcUxRJufw for more details.
r? ```@compiler-errors```
Provide structured suggestion for `#![feature(foo)]`
```
error: `S2<'_>` is forbidden as the type of a const generic parameter
--> $DIR/lifetime-in-const-param.rs:5:23
|
LL | struct S<'a, const N: S2>(&'a ());
| ^^
|
= note: the only supported types are integers, `bool` and `char`
help: add `#![feature(adt_const_params)]` to the crate attributes to enable more complex and user defined types
|
LL + #![feature(adt_const_params)]
|
```
Fix#55941.
never patterns: suggest `!` patterns on non-exhaustive matches
When a match is non-exhaustive we now suggest never patterns whenever it makes sense.
r? ``@compiler-errors``
Reject overly generic assoc const binding types
Split off from #119385 to make #119385 easier to review.
---
In the *instantiated* type of assoc const bindings
1. reject **early-bound generic params**
* Provide a rich error message instead of ICE'ing ([#108271](https://github.com/rust-lang/rust/issues/108271)).
* This is a temporary and semi-artificial restriction until the arrival of *generic const generics*.
* It's quite possible that rustc could already perfectly support this subset of generic const generics if we just removed some checks (some `.no_bound_vars().expect(…)`) but even if that was the case, I'd rather gate it behind a new feature flag. Reporting an error instead of ICE'ing is a good first step towards an eventual feature gate error.
2. reject **escaping late-bound generic params**
* They lead to ICEs before & I'm pretty sure that they remain incorrect even in a world with *generic const generics*
---
Together with #118668 & #119385, this supersedes #118360.
Fixes#108271.
```
error: `S2<'_>` is forbidden as the type of a const generic parameter
--> $DIR/lifetime-in-const-param.rs:5:23
|
LL | struct S<'a, const N: S2>(&'a ());
| ^^
|
= note: the only supported types are integers, `bool` and `char`
help: add `#![feature(adt_const_params)]` to the crate attributes to enable more complex and user defined types
|
LL + #![feature(adt_const_params)]
|
```
Fix#55941.
Do not eat nested expressions' results in `MayContainYieldPoint` format args visitor
#121563 unintentionally changed the `MayContainYieldPoint` format args visitor behavior, now missing yield points in nested expressions, as seen in #122674.
The walk can find a yield point in an expression but it was ignored.
r? ``@petrochenkov`` as the reviewer of #121563
cc ``@Jarcho`` as the author
Fixes#122674.
We're in the 1.77 release week. #121563 will land on 1.78 but beta is still 1.77.9: this PR will likely need to be backported soon after beta is cut.
Update the minimum external LLVM to 17
With this change, we'll have stable support for LLVM 17 and 18.
For reference, the previous increase to LLVM 16 was #117947.
Move `option_env!` and `env!` tests to the `env-macro` directory
This PR moves the `option_env!` tests to there own directory (`extoption_env`), matching the naming convention used by the tests for `env!` (which live in the `extenv` directory).
Detect when move of !Copy value occurs within loop and should likely not be cloned
When encountering a move error on a value within a loop of any kind,
identify if the moved value belongs to a call expression that should not
be cloned and avoid the semantically incorrect suggestion. Also try to
suggest moving the call expression outside of the loop instead.
```
error[E0382]: use of moved value: `vec`
--> $DIR/recreating-value-in-loop-condition.rs:6:33
|
LL | let vec = vec!["one", "two", "three"];
| --- move occurs because `vec` has type `Vec<&str>`, which does not implement the `Copy` trait
LL | while let Some(item) = iter(vec).next() {
| ----------------------------^^^--------
| | |
| | value moved here, in previous iteration of loop
| inside of this loop
|
note: consider changing this parameter type in function `iter` to borrow instead if owning the value isn't necessary
--> $DIR/recreating-value-in-loop-condition.rs:1:17
|
LL | fn iter<T>(vec: Vec<T>) -> impl Iterator<Item = T> {
| ---- ^^^^^^ this parameter takes ownership of the value
| |
| in this function
help: consider moving the expression out of the loop so it is only moved once
|
LL ~ let mut value = iter(vec);
LL ~ while let Some(item) = value.next() {
|
```
We use the presence of a `break` in the loop that would be affected by
the moved value as a heuristic for "shouldn't be cloned".
Fix https://github.com/rust-lang/rust/issues/121466.
---
*Point at continue and break that might be in the wrong place*
Sometimes move errors are because of a misplaced `continue`, but we didn't
surface that anywhere. Now when there are more than one set of nested loops
we show them out and point at the `continue` and `break` expressions within
that might need to go elsewhere.
```
error[E0382]: use of moved value: `foo`
--> $DIR/nested-loop-moved-value-wrong-continue.rs:46:18
|
LL | for foo in foos {
| ---
| |
| this reinitialization might get skipped
| move occurs because `foo` has type `String`, which does not implement the `Copy` trait
...
LL | for bar in &bars {
| ---------------- inside of this loop
...
LL | baz.push(foo);
| --- value moved here, in previous iteration of loop
...
LL | qux.push(foo);
| ^^^ value used here after move
|
note: verify that your loop breaking logic is correct
--> $DIR/nested-loop-moved-value-wrong-continue.rs:41:17
|
LL | for foo in foos {
| ---------------
...
LL | for bar in &bars {
| ----------------
...
LL | continue;
| ^^^^^^^^ this `continue` advances the loop at line 33
help: consider moving the expression out of the loop so it is only moved once
|
LL ~ let mut value = baz.push(foo);
LL ~ for bar in &bars {
LL |
...
LL | if foo == *bar {
LL ~ value;
|
help: consider cloning the value if the performance cost is acceptable
|
LL | baz.push(foo.clone());
| ++++++++
```
Fix https://github.com/rust-lang/rust/issues/92531.
Sometimes move errors are because of a misplaced `continue`, but we didn't
surface that anywhere. Now when there are more than one set of nested loops
we show them out and point at the `continue` and `break` expressions within
that might need to go elsewhere.
```
error[E0382]: use of moved value: `foo`
--> $DIR/nested-loop-moved-value-wrong-continue.rs:46:18
|
LL | for foo in foos {
| ---
| |
| this reinitialization might get skipped
| move occurs because `foo` has type `String`, which does not implement the `Copy` trait
...
LL | for bar in &bars {
| ---------------- inside of this loop
...
LL | baz.push(foo);
| --- value moved here, in previous iteration of loop
...
LL | qux.push(foo);
| ^^^ value used here after move
|
note: verify that your loop breaking logic is correct
--> $DIR/nested-loop-moved-value-wrong-continue.rs:41:17
|
LL | for foo in foos {
| ---------------
...
LL | for bar in &bars {
| ----------------
...
LL | continue;
| ^^^^^^^^ this `continue` advances the loop at line 33
help: consider moving the expression out of the loop so it is only moved once
|
LL ~ let mut value = baz.push(foo);
LL ~ for bar in &bars {
LL |
...
LL | if foo == *bar {
LL ~ value;
|
help: consider cloning the value if the performance cost is acceptable
|
LL | baz.push(foo.clone());
| ++++++++
```
Fix#92531.
When encountering a move error on a value within a loop of any kind,
identify if the moved value belongs to a call expression that should not
be cloned and avoid the semantically incorrect suggestion. Also try to
suggest moving the call expression outside of the loop instead.
```
error[E0382]: use of moved value: `vec`
--> $DIR/recreating-value-in-loop-condition.rs:6:33
|
LL | let vec = vec!["one", "two", "three"];
| --- move occurs because `vec` has type `Vec<&str>`, which does not implement the `Copy` trait
LL | while let Some(item) = iter(vec).next() {
| ----------------------------^^^--------
| | |
| | value moved here, in previous iteration of loop
| inside of this loop
|
note: consider changing this parameter type in function `iter` to borrow instead if owning the value isn't necessary
--> $DIR/recreating-value-in-loop-condition.rs:1:17
|
LL | fn iter<T>(vec: Vec<T>) -> impl Iterator<Item = T> {
| ---- ^^^^^^ this parameter takes ownership of the value
| |
| in this function
help: consider moving the expression out of the loop so it is only moved once
|
LL ~ let mut value = iter(vec);
LL ~ while let Some(item) = value.next() {
|
```
We use the presence of a `break` in the loop that would be affected by
the moved value as a heuristic for "shouldn't be cloned".
Fix#121466.
Delegation: fix ICE on duplicated associative items
Currently, functions delegation is only supported for delegation items with early resolved paths e.g. free functions and trait methods. During name resolution, information about function signatures is collected, including the number of parameters and whether there are self arguments. This information is then used when lowering from a delegation item into a regular function(`rustc_ast_lowering/src/delegation.rs`). The signature is usually inherited from path resolution id(`path_id`). However, in the case of trait impls `path_id` and `item_id` may be different:
```rust
trait Trait {
fn foo(&self) -> u32 { 0 }
}
struct S;
mod to_reuse {
use crate::S;
pub fn foo(_: &S) -> u32 { 0 }
}
impl Trait for S {
reuse to_reuse::foo { self }
//~^ The signature should be inherited from item id instead of resolution id
}
```
Let's now consider an example from [issue](https://github.com/rust-lang/rust/issues/119920). Due to duplicated associative elements partial resolution for one of them will not be recorded:
9023f908cf/compiler/rustc_resolve/src/late.rs (L3153-L3162)
Which leads to an incorrect `is_in_trait_impl`
9023f908cf/compiler/rustc_ast_lowering/src/item.rs (L981-L986)
Which leads to an incorrect id for signature inheritance
9023f908cf/compiler/rustc_ast_lowering/src/delegation.rs (L99-L105)
Which lead to an ICE from original issue.
This patch fixes wrong `is_in_trait_impl` calculation.
fixes https://github.com/rust-lang/rust/issues/119920
Split refining_impl_trait lint into _reachable, _internal variants
As discussed in https://github.com/rust-lang/rust/issues/119535#issuecomment-1909352040:
> We discussed this today in triage and developed a consensus to:
>
> * Add a separate lint against impls that refine a return type defined with RPITIT even when the trait is not crate public.
> * Place that in a lint group along with the analogous crate public lint.
> * Create an issue to solicit feedback on these lints (or perhaps two separate ones).
> * Have the warnings displayed with each lint reference this issue in a similar manner to how we do that today with the required `Self: '0'` bound on GATs.
> * Make a note to review this feedback on 2-3 release cycles.
This points users to https://github.com/rust-lang/rust/issues/121718 to leave feedback.
Stop walking the bodies of statics for reachability, and evaluate them instead
cc `@saethlin` `@RalfJung`
cc #119214
This reuses the `DefIdVisitor` from `rustc_privacy`, because they basically try to do the same thing.
This PR's changes can probably be extended to constants, too, but let's tackle that separately, it's likely more involved.
`f16` and `f128` step 3: compiler support & feature gate
Continuation of https://github.com/rust-lang/rust/pull/121841, another portion of https://github.com/rust-lang/rust/pull/114607
This PR exposes the new types to the world and adds a feature gate. Marking this as a draft because I need some feedback on where I did the feature gate check. It also does not yet catch type via suffixed literals (so the feature gate test will fail, probably some others too because I haven't belssed).
If there is a better place to check all types after resolution, I can do that. If not, I figure maybe I can add a second gate location in AST when it checks numeric suffixes.
Unfortunately I still don't think there is much testing to be done for correctness (codegen tests or parsed value checks) until we have basic library support. I think that will be the next step.
Tracking issue: https://github.com/rust-lang/rust/issues/116909
r? `@compiler-errors`
cc `@Nilstrieb`
`@rustbot` label +F-f16_and_f128
Safe Transmute: Use 'not yet supported', not 'unspecified' in errors
We can (and will) support analyzing the transmutability of types whose layouts aren't completely specified by its repr. This change ensures that the error messages remain sensible after this support lands.
r? ``@compiler-errors``
Detect calls to .clone() on T: !Clone types on borrowck errors
When encountering a lifetime error on a type that *holds* a type that doesn't implement `Clone`, explore the item's body for potential calls to `.clone()` that are only cloning the reference `&T` instead of `T` because `T: !Clone`. If we find this, suggest `T: Clone`.
```
error[E0502]: cannot borrow `*list` as mutable because it is also borrowed as immutable
--> $DIR/clone-on-ref.rs:7:5
|
LL | for v in list.iter() {
| ---- immutable borrow occurs here
LL | cloned_items.push(v.clone())
| ------- this call doesn't do anything, the result is still `&T` because `T` doesn't implement `Clone`
LL | }
LL | list.push(T::default());
| ^^^^^^^^^^^^^^^^^^^^^^^ mutable borrow occurs here
LL |
LL | drop(cloned_items);
| ------------ immutable borrow later used here
|
help: consider further restricting this bound
|
LL | fn foo<T: Default + Clone>(list: &mut Vec<T>) {
| +++++++
```
```
error[E0505]: cannot move out of `x` because it is borrowed
--> $DIR/clone-on-ref.rs:23:10
|
LL | fn qux(x: A) {
| - binding `x` declared here
LL | let a = &x;
| -- borrow of `x` occurs here
LL | let b = a.clone();
| ------- this call doesn't do anything, the result is still `&A` because `A` doesn't implement `Clone`
LL | drop(x);
| ^ move out of `x` occurs here
LL |
LL | println!("{b:?}");
| ----- borrow later used here
|
help: consider annotating `A` with `#[derive(Clone)]`
|
LL + #[derive(Clone)]
LL | struct A;
|
```
Fix#48677.
Consolidate WF for aliases
Make RPITs/TAITs/weak (type) aliases/projections all enforce:
1. their nominal predicates
2. their args are WF
This possibly does extra work, but is also nice for consistency sake.
r? lcnr
We can (and will) support analyzing the transmutability of types
whose layouts aren't completely specified by its repr. This change
ensures that the error messages remain sensible after this support
lands.