Rollup of 8 pull requests
Successful merges:
- #125205 (Fixup Windows verbatim paths when used with the `include!` macro)
- #131049 (Validate args are correct for `UnevaluatedConst`, `ExistentialTraitRef`/`ExistentialProjection`)
- #131549 (Add a note for `?` on a `impl Future<Output = Result<..>>` in sync function)
- #131731 (add `TestFloatParse` to `tools.rs` for bootstrap)
- #131732 (Add doc(plugins), doc(passes), etc. to INVALID_DOC_ATTRIBUTES)
- #132006 (don't stage-off to previous compiler when CI rustc is available)
- #132022 (Move `cmp_in_dominator_order` out of graph dominator computation)
- #132033 (compiletest: Make `line_directive` return a `DirectiveLine`)
r? `@ghost`
`@rustbot` modify labels: rollup
Add a note for `?` on a `impl Future<Output = Result<..>>` in sync function
It's confusing to `?` a future of a result in a sync function. We have a suggestion to `.await` it if we're in an async function, but not a sync function. Note that this is the case for sync functions, at least.
Let's be a bit more vague about a fix, since it's somewhat context dependent. For example, you could block on it, or you could make your function asynchronous. 🤷
As part of the "arbitrary self types v2" project, we are going to
replace the current `Receiver` trait with a new mechanism based on a
new, different `Receiver` trait.
This PR renames the old trait to get it out the way. Naming is hard.
Options considered included:
* HardCodedReceiver (because it should only be used for things in the
standard library, and hence is sort-of hard coded)
* LegacyReceiver
* TargetLessReceiver
* OldReceiver
These are all bad names, but fortunately this will be temporary.
Assuming the new mechanism proceeds to stabilization as intended, the
legacy trait will be removed altogether.
Although we expect this trait to be used only in the standard library,
we suspect it may be in use elsehwere, so we're landing this change
separately to identify any surprising breakages.
It's known that this trait is used within the Rust for Linux project; a
patch is in progress to remove their dependency.
This is a part of the arbitrary self types v2 project,
https://github.com/rust-lang/rfcs/pull/3519https://github.com/rust-lang/rust/issues/44874
r? @wesleywiser
terminology: #[feature] *enables* a feature (instead of "declaring" or "activating" it)
Mostly, we currently call a feature that has a corresponding `#[feature(name)]` attribute in the current crate a "declared" feature. I think that is confusing as it does not align with what "declaring" usually means. Furthermore, we *also* refer to `#[stable]`/`#[unstable]` as *declaring* a feature (e.g. in [these diagnostics](f25e5abea2/compiler/rustc_passes/messages.ftl (L297-L301))), which aligns better with what "declaring" usually means. To make things worse, the functions `tcx.features().active(...)` and `tcx.features().declared(...)` both exist and they are doing almost the same thing (testing whether a corresponding `#[feature(name)]` exists) except that `active` would ICE if the feature is not an unstable lang feature. On top of this, the callback when a feature is activated/declared is called `set_enabled`, and many comments also talk about "enabling" a feature.
So really, our terminology is just a mess.
I would suggest we use "declaring a feature" for saying that something is/was guarded by a feature (e.g. `#[stable]`/`#[unstable]`), and "enabling a feature" for `#[feature(name)]`. This PR implements that.
Move const trait tests from `ui/rfcs/rfc-2632-const-trait-impl` to `ui/traits/const-traits`
I found the old test directory to be somewhat long to name, and I don't think it's necessary to put an experimental implementation's tests under an rfc which is closed.
r? fee1-dead
Breaking this out of #131985 so that PR doesn't touch 300 files.
rust_for_linux: -Zregparm=<N> commandline flag for X86 (#116972)
Command line flag `-Zregparm=<N>` for X86 (32-bit) for rust-for-linux: https://github.com/rust-lang/rust/issues/116972
Implemented in the similar way as fastcall/vectorcall support (args are marked InReg if fit).
make unsupported_calling_conventions a hard error
This has been a future-compat lint (not shown in dependencies) since Rust 1.55, released 3 years ago. Hopefully that was enough time so this can be made a hard error now. Given that long timeframe, I think it's justified to skip the "show in dependencies" stage. There were [not many crates hitting this](https://github.com/rust-lang/rust/pull/86231#issuecomment-866300943) even when the lint was originally added.
This should get cratered, and I assume then it needs a t-compiler FCP. (t-compiler because this looks entirely like an implementation oversight -- for the vast majority of ABIs, we already have a hard error, but some were initially missed, and we are finally fixing that.)
Fixes https://github.com/rust-lang/rust/pull/87678
Improve test coverage for `unit_bindings` lint
Follow-up to #112380, apparently at the time I didn't add much of any test coverage outside of just "generally works as intended on the test suites and in the crater run".
r? compiler
test: Add test for trait in FQS cast, issue #98565Closes#98565 by adding a test to check for diagnostics when the built-in type `str` is used in a cast where a trait is expected.
stabilize Strict Provenance and Exposed Provenance APIs
Given that [RFC 3559](https://rust-lang.github.io/rfcs/3559-rust-has-provenance.html) has been accepted, t-lang has approved the concept of provenance to exist in the language. So I think it's time that we stabilize the strict provenance and exposed provenance APIs, and discuss provenance explicitly in the docs:
```rust
// core::ptr
pub const fn without_provenance<T>(addr: usize) -> *const T;
pub const fn dangling<T>() -> *const T;
pub const fn without_provenance_mut<T>(addr: usize) -> *mut T;
pub const fn dangling_mut<T>() -> *mut T;
pub fn with_exposed_provenance<T>(addr: usize) -> *const T;
pub fn with_exposed_provenance_mut<T>(addr: usize) -> *mut T;
impl<T: ?Sized> *const T {
pub fn addr(self) -> usize;
pub fn expose_provenance(self) -> usize;
pub fn with_addr(self, addr: usize) -> Self;
pub fn map_addr(self, f: impl FnOnce(usize) -> usize) -> Self;
}
impl<T: ?Sized> *mut T {
pub fn addr(self) -> usize;
pub fn expose_provenance(self) -> usize;
pub fn with_addr(self, addr: usize) -> Self;
pub fn map_addr(self, f: impl FnOnce(usize) -> usize) -> Self;
}
impl<T: ?Sized> NonNull<T> {
pub fn addr(self) -> NonZero<usize>;
pub fn with_addr(self, addr: NonZero<usize>) -> Self;
pub fn map_addr(self, f: impl FnOnce(NonZero<usize>) -> NonZero<usize>) -> Self;
}
```
I also did a pass over the docs to adjust them, because this is no longer an "experiment". The `ptr` docs now discuss the concept of provenance in general, and then they go into the two families of APIs for dealing with provenance: Strict Provenance and Exposed Provenance. I removed the discussion of how pointers also have an associated "address space" -- that is not actually tracked in the pointer value, it is tracked in the type, so IMO it just distracts from the core point of provenance. I also adjusted the docs for `with_exposed_provenance` to make it clear that we cannot guarantee much about this function, it's all best-effort.
There are two unstable lints associated with the strict_provenance feature gate; I moved them to a new [strict_provenance_lints](https://github.com/rust-lang/rust/issues/130351) feature since I didn't want this PR to have an even bigger FCP. ;)
`@rust-lang/opsem` Would be great to get some feedback on the docs here. :)
Nominating for `@rust-lang/libs-api.`
Part of https://github.com/rust-lang/rust/issues/95228.
[FCP comment](https://github.com/rust-lang/rust/pull/130350#issuecomment-2395114536)
Finish stabilization of `result_ffi_guarantees`
The internal linting has been changed, so all that is left is making sure we stabilize what we want to stabilize.
Rollup of 4 pull requests
Successful merges:
- #126588 (Added more scenarios where comma to be removed in the function arg)
- #131728 (bootstrap: extract builder cargo to its own module)
- #131968 (Rip out old effects var handling code from traits)
- #131981 (Remove the `BoundConstness::NotConst` variant)
r? `@ghost`
`@rustbot` modify labels: rollup
Added more scenarios where comma to be removed in the function arg
This is an attempt to address the problem methion in https://github.com/rust-lang/rust/issues/106304#issuecomment-1837273666.
Copy the annotation to explain the fix
If the next Error::Extra ("next") doesn't next to current ("current")
```
fn foo(_: (), _: u32) {}
- foo("current", (), 1u32, "next")
+ foo((), 1u32)
```
If the previous error is not a `Error::Extra`, then do not trim the next comma
```
- foo((), "current", 42u32, "next")
+ foo((), 42u32)
```
Frankly, this is a fix from a test case and may not cover all scenarios
Continue to get rid of `ty::Const::{try_}eval*`
This PR mostly does:
* Removes all of the `try_eval_*` and `eval_*` helpers from `ty::Const`, and replace their usages with `try_to_*`.
* Remove `ty::Const::eval`.
* Rename `ty::Const::normalize` to `ty::Const::normalize_internal`. This function is still used in the normalization code itself.
* Fix some weirdness around the `TransmuteFrom` goal.
I'm happy to split it out further; for example, I could probably land the first part which removes the helpers, or the changes to codegen which are more obvious than the changes to tools.
r? BoxyUwU
Part of https://github.com/rust-lang/rust/issues/130704
`optimize` attribute applied to things other than methods/functions/c…
…losures gives an error (#128488)
Duplicate of #128943, which I had accidentally closed when rebasing.
cc. `@jieyouxu` `@compiler-errors` `@nikomatsakis` `@traviscross` `@pnkfelix.`
compiler: Error on layout of enums with invalid reprs
Surprising no one, the ICEs with the same message have the same root cause.
Invalid reprs can reach layout computation for various reasons. For instance, the compiler may want to use its layout computations to discern if a combination of layout-affecting attributes results in a valid type to begin with by e.g. computing its size. When the input is bad, return an error reflecting that the answer to the question is not a useful one.
Allow `#[deny]` inside `#[forbid]` as a no-op
Forbid cannot be overriden. When someome tries to do this anyways, it results in a hard error. That makes sense.
Except it doesn't, because macros. Macros may reasonably use `#[deny]` (or `#[warn]` for an allow-by-default lint) in their expansion to assert that their expanded code follows the lint. This is doesn't work when the output gets expanded into a `forbid()` context. This is pretty silly, since both the macros and the code agree on the lint!
By making it a warning instead, we remove the problem with the macro, which is now nothing as warnings are suppressed in macro expanded code, while still telling users that something is up.
fixes#121483
Just because the code says it's OK does not mean that it actually is OK.
Nodes with the same total size were not sorted, their order relied on
hashmap iteration.
Stop inverting expectation in normalization errors
We have some funky special case logic to invert the expectation and actual type for normalization errors depending on their cause code. IMO most of the error messages get better, except for `try {}` blocks' type expectations. I think that these need to be special cased in some other way, rather than via this hack.
Fixes#131763
Make sure that outer opaques capture inner opaques's lifetimes even with precise capturing syntax
When lowering an opaque, we must capture and duplicate all of the lifetimes in the opaque's bounds to correctly lower the opaque's bounds. We do this *even if* the lifetime is not captured according to the `+ use<>` precise capturing bound; in that case, we will later reject that captured lifetime. For example, Given an opaque like `impl Sized + 'a + use<>`, we will still duplicate `'a` but later error that it is not mentioned in the `use<>` bound.
The current heuristic was not properly handling cases like:
```
//@ edition: 2024
fn foo<'a>() -> impl Trait<Assoc = impl Trait2> + use<> {}
```
Which forces the outer `impl Trait` to capture `'a` since `impl Trait2` *implicitly* captures `'a` due to the new lifetime capture rules for edition 2024. We were only capturing lifetimes syntactically mentioned in the bounds. (Note that this still is an error; we just need to capture `'a` so it is handled later in the compiler correctly -- hence the ICE in #131769 where a late-bound lifetime was being referenced outside of its binder).
This PR reworks the way we collect lifetimes to capture and duplicate in AST lowering to fix this.
Fixes#131769
warn less about non-exhaustive in ffi
Bindgen allows generating `#[non_exhaustive] #[repr(u32)]` enums. This results in nonintuitive nonlocal `improper_ctypes` warnings, even when the types are otherwise perfectly valid in C.
Adjust for actual tooling expectations by avoiding warning on simple enums with only unit variants.
Closes https://github.com/rust-lang/rust/issues/116831
Forbid cannot be overriden. When someome tries to do this anyways,
it results in a hard error. That makes sense.
Except it doesn't, because macros. Macros may reasonably use `#[deny]`
in their expansion to assert
that their expanded code follows the lint. This is doesn't work when the
output gets expanded into a `forbid()` context. This is pretty silly,
since both the macros and the code agree on the lint!
Therefore, we allow `#[deny(..)]`ing a lint that's already forbidden,
keeping the level at forbid.
Never emit `vptr` for empty/auto traits
Emiting `vptr`s for empty/auto traits is unnecessary (#114942) and causes unsoundness in `trait_upcasting` (#131813). This PR should ensure that we never emit vtables for such traits. See the linked issues for more details.
I'm not sure if I can add tests for the vtable layout. So this PR only adds tests for the soundness hole (i.e., the segmentation fault will disappear after this PR).
Fixes#114942Fixes#131813
Cc #65991 (tracking issue for `trait_upcasting`)
r? `@WaffleLapkin` (per https://github.com/rust-lang/rust/issues/131813#issuecomment-2419969745)
Allow dropping dyn principal
Revival of #126660, which was a revival of #114679. Fixes#126313.
Allows dropping principal when coercing trait objects, e.g. `dyn Debug + Send` -> `dyn Send`.
cc `@compiler-errors` `@Jules-Bertholet`
r? `@lcnr`
Add `must_use` to `CommandExt::exec`
[CommandExt::exec](https://fburl.com/0qhpo7nu) returns a `std::io::Error` in the case exec fails, but its not currently marked as `must_use` making it easy to accidentally ignore it.
This PR adds the `must_use` attributed here as i think it fits the definition in the guide of [When to add #[must_use]](https://std-dev-guide.rust-lang.org/policy/must-use.html#when-to-add-must_use)
Make destructors on `extern "C"` frames to be executed
This would make the example in #123231 print "Noisy Drop". I didn't mark this as fixing the issue because the behaviour is yet to be spec'ed.
Tracking:
- https://github.com/rust-lang/rust/issues/74990
Emscripten: Xfail backtrace ui tests
It is possible to link libunwind and use the normal backtrace code, but it fails to symbolize stack traces. I investigated and could get the list of instruction pointers and symbol names, but I'm not sure how to use the dwarf info to map from instruction pointer to source location. In any case, fixing this is not a high priority.
See https://github.com/rust-lang/rust/issues/131738
r?jieyouxu
Rename `can_coerce` to `may_coerce`, and then structurally resolve correctly in the probe
We need to structurally resolve the lhs and rhs of the coercion. Also, renaming the method so it's less ambiguous about what it's doing... the word "may" gives more clear signal that it has false positives imo.
r? lcnr
Don't check unsize goal in MIR validation when opaques remain
Similarly to `mir_assign_valid_types`, let's just skip when there are opaques. Fixes#130921.
Ignore lint-non-snake-case-crate#proc_macro_ on targets without unwind
The lint-non-snake-case-crate test may emit a warning in stderr if the target does not support unwinding
```
warning: building proc macro crate with `panic=abort` may crash the compiler should the proc-macro panic
```
Consequently, the test will fail on targets that don't support unwinding as written.
This change modifies the expected stderr for lint-non-snake-case-crate in the proc_macro_ to ignore lines that indicate a warning was emitted.
Try to improve error messages involving aliases in the solver
1. Treat aliases as rigid only if it may not be defined and it's well formed (i.e. for projections, its trait goal is satisfied).
2. Record goals that are related to alias normalization under a new `GoalKind`, so we can look into them in the `BestObligation` visitor.
3. Try to deduplicate errors due to self types of goals that are un-normalizable aliases.
r? lcnr
Implement edition 2024 match ergonomics restrictions
This implements the minimalest version of [match ergonomics for edition 2024](https://rust-lang.github.io/rfcs/3627-match-ergonomics-2024.html). This minimal version makes it an error to ever reset the default binding mode. The implemented proposal is described precisely [here](https://hackmd.io/zUqs2ISNQ0Wrnxsa9nhD0Q#RFC-3627-nano), where it is called "RFC 3627-nano".
Rules:
- Rule 1C: When the DBM (default binding mode) is not `move` (whether or not behind a reference), writing `mut`, `ref`, or `ref mut` on a binding is an error.
- Rule 2C: Reference patterns can only match against references in the scrutinee when the DBM is `move`.
This minimal version is forward-compatible with the main proposals for match ergonomics 2024: [RFC3627](https://rust-lang.github.io/rfcs/3627-match-ergonomics-2024.html) itself, the alternative [rule 4-early variant](https://rust-lang.github.io/rfcs/3627-match-ergonomics-2024.html), and [others](https://hackmd.io/zUqs2ISNQ0Wrnxsa9nhD0Q). The idea is to give us more time to iron out a final proposal.
This includes a migration lint that desugars any offending pattern into one that doesn't make use of match ergonomics. Such patterns have identical meaning across editions.
This PR insta-stabilizes the proposed behavior onto edition 2024.
r? `@ghost`
Tracking:
- https://github.com/rust-lang/rust/issues/123076
Add the pauth-lr target feature, corresponding to aarch64 FEAT_PAuth_LR.
This feature has been added in LLVM 19.
It is currently not supported by the Linux hwcap and so we cannot add
runtime feature detection for it at this time.
The lint-non-snake-case-crate test may emit a warning in stderr if the
target does not support unwinding
```
warning: building proc macro crate with `panic=abort` may crash the compiler should the proc-macro panic
```
Consequently, the test will fail on targets that don't support unwinding
as written.
This change prevents lint-non-snake-case-crate#proc_macro_ from running
on targets that don't support unwind by using the needs-unwind
directive.
It is possible to link libunwind and use the normal backtrace code, but it fails
to symbolize stack traces. I investigated and could get the list of instruction
pointers and symbol names, but I'm not sure how to use the dwarf info to map
from instruction pointer to source location. In any case, fixing this is
probably not a high priority.
See https://github.com/rust-lang/rust/issues/131738
Handle gracefully true/false in `cfg(target(..))` compact
This PR handles gracefully `true`/`false` in `cfg(target(..))` compact instead of ICE.
r? `@nnethercote`
Fixes#131759
Don't report bivariance error when nesting a struct with field errors into another struct
We currently have logic to avoid reporting lifetime bivariance ("lifetime parameter ... is never used") errors when a struct has field resolution errors. However, this doesn't apply transitively. This PR implements a simple visitor to do so.
This was reported [here](https://twitter.com/fasterthanlime/status/1846257921086165033) since a `derive(Deserialize, Serialize)` ends up generating helper structs which have bivariant lifetimes due to containing the offending struct (that's being derived on).
Fix most ui tests on emscripten target
To fix the linker errors, we need to set the output extension to `.js` instead of `.wasm`. Setting the output to a `.wasm` file puts Emscripten into standalone mode which is effectively a distinct target. We need to set the runner to be `node` as well.
This fixes most of the ui tests. I fixed 4 additional tests with simple problems:
- `intrinsics/intrinsic-alignment.rs` -- Two `#[cfg]` macros match for Emscripten so we got duplicate definition
- `structs-enums/rec-align-u64.rs` -- same problem
- `issues/issue-12699.rs` -- hangs so I disabled it
- `process/process-sigpipe.rs` -- Not expected to work on Emscripten so I disabled it
Resolves#131666.
There are 7 more failing tests. I'll try to investigate more and see if I can fix them or at least understand why they happen.
- abi/numbers-arithmetic/return-float.rs (problem with [wasm treatment of noncanonical floats](https://webassembly.github.io/spec/core/exec/numerics.html#nan-propagation)?)
- async-await/issue-60709.rs -- linker error related to memcpy. Possible Emscripten bug?
- backtrace/dylib-dep.rs -- Says "Not supported"
- backtrace/line-tables-only.rs -- Says "Not supported"
- no_std/no-std-unwind-binary.rs -- compiler says `error: lang item required, but not found: eh_catch_typeinfo`
- structs-enums/enum-rec/issue-17431-6.rs -- One of the two compiler errors is missing
- test-attrs/test-passed.rs
r?workingjubilee r?jieyouxu
Don't report `on_unimplemented` message for negative traits
Kinda useless change but it was affecting my ability to read error messages when experimenting with negative bounds.
stabilize `-Znext-solver=coherence` again
r? `@compiler-errors`
---
This PR stabilizes the use of the next generation trait solver in coherence checking by enabling `-Znext-solver=coherence` by default. More specifically its use in the *implicit negative overlap check*. The tracking issue for this is https://github.com/rust-lang/rust/issues/114862. Closes#114862.
This is a direct copy of #121848 which has been reverted due to a hang in `nalgebra`: #130056. This hang should have been fixed by #130617 and #130821. See the added section in the stabilization report containing user facing changes merged since the original FCP.
## Background
### The next generation trait solver
The new solver lives in [`rustc_trait_selection::solve`](https://github.com/rust-lang/rust/blob/master/compiler/rustc_trait_selection/src/solve/mod.rs) and is intended to replace the existing *evaluate*, *fulfill*, and *project* implementation. It also has a wider impact on the rest of the type system, for example by changing our approach to handling associated types.
For a more detailed explanation of the new trait solver, see the [rustc-dev-guide](https://rustc-dev-guide.rust-lang.org/solve/trait-solving.html). This does not stabilize the current behavior of the new trait solver, only the behavior impacting the implicit negative overlap check. There are many areas in the new solver which are not yet finalized. We are confident that their final design will not conflict with the user-facing behavior observable via coherence. More on that further down.
Please check out [the chapter](https://rustc-dev-guide.rust-lang.org/solve/significant-changes.html) summarizing the most significant changes between the existing and new implementations.
### Coherence and the implicit negative overlap check
Coherence checking detects any overlapping impls. Overlapping trait impls always error while overlapping inherent impls result in an error if they have methods with the same name. Coherence also results in an error if any other impls could exist, even if they are currently unknown. This affects impls which may get added to upstream crates in a backwards compatible way and impls from downstream crates.
Coherence failing to detect overlap is generally considered to be unsound, even if it is difficult to actually get runtime UB this way. It is quite easy to get ICEs due to bugs in coherence.
It currently consists of two checks:
The [orphan check] validates that impls do not overlap with other impls we do not know about: either because they may be defined in a sibling crate, or because an upstream crate is allowed to add it without being considered a breaking change.
The [overlap check] validates that impls do not overlap with other impls we know about. This is done as follows:
- Instantiate the generic parameters of both impls with inference variables
- Equate the `TraitRef`s of both impls. If it fails there is no overlap.
- [implicit negative]: Check whether any of the instantiated `where`-bounds of one of the impls definitely do not hold when using the constraints from the previous step. If a `where`-bound does not hold, there is no overlap.
- *explicit negative (still unstable, ignored going forward)*: Check whether the any negated `where`-bounds can be proven, e.g. a `&mut u32: Clone` bound definitely does not hold as an explicit `impl<T> !Clone for &mut T` exists.
The overlap check has to *prove that unifying the impls does not succeed*. This means that **incorrectly getting a type error during coherence is unsound** as it would allow impls to overlap: coherence has to be *complete*.
Completeness means that we never incorrectly error. This means that during coherence we must only add inference constraints if they are definitely necessary. During ordinary type checking [this does not hold](https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=01d93b592bd9036ac96071cbf1d624a9), so the trait solver has to behave differently, depending on whether we're in coherence or not.
The implicit negative check only considers goals to "definitely not hold" if they could not be implemented downstream, by a sibling, or upstream in a backwards compatible way. If the goal is is "unknowable" as it may get added in another crate, we add an ambiguous candidate: [source](bea5bebf3d/compiler/rustc_trait_selection/src/solve/assembly/mod.rs (L858-L883)).
[orphan check]: fd80c02c16/compiler/rustc_trait_selection/src/traits/coherence.rs (L566-L579)
[overlap check]: fd80c02c16/compiler/rustc_trait_selection/src/traits/coherence.rs (L92-L98)
[implicit negative]: fd80c02c16/compiler/rustc_trait_selection/src/traits/coherence.rs (L223-L281)
## Motivation
Replacing the existing solver in coherence fixes soundness bugs by removing sources of incompleteness in the type system. The new solver separately strengthens coherence, resulting in more impls being disjoint and passing the coherence check. The concrete changes will be elaborated further down. We believe the stabilization to reduce the likelihood of future bugs in coherence as the new implementation is easier to understand and reason about.
It allows us to remove the support for coherence and implicit-negative reasoning in the old solver, allowing us to remove some code and simplifying the old trait solver. We will only remove the old solver support once this stabilization has reached stable to make sure we're able to quickly revert in case any unexpected issues are detected before then.
Stabilizing the use of the next-generation trait solver expresses our confidence that its current behavior is intended and our work towards enabling its use everywhere will not require any breaking changes to the areas used by coherence checking. We are also confident that we will be able to replace the existing solver everywhere, as maintaining two separate systems adds a significant maintainance burden.
## User-facing impact and reasoning
### Breakage due to improved handling of associated types
The new solver fixes multiple issues related to associated types. As these issues caused coherence to consider more types distinct, fixing them results in more overlap errors. This is therefore a breaking change.
#### Structurally relating aliases containing bound vars
Fixes https://github.com/rust-lang/rust/issues/102048. In the existing solver relating ambiguous projections containing bound variables is structural. This is *incomplete* and allows overlapping impls. These was mostly not exploitable as the same issue also caused impls to not apply when trying to use them. The new solver defers alias-relating to a nested goal, fixing this issue:
```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
trait Trait {}
trait Project {
type Assoc<'a>;
}
impl Project for u32 {
type Assoc<'a> = &'a u32;
}
// Eagerly normalizing `<?infer as Project>::Assoc<'a>` is ambiguous,
// so the old solver ended up structurally relating
//
// (?infer, for<'a> fn(<?infer as Project>::Assoc<'a>))
//
// with
//
// ((u32, fn(&'a u32)))
//
// Equating `&'a u32` with `<u32 as Project>::Assoc<'a>` failed, even
// though these types are equal modulo normalization.
impl<T: Project> Trait for (T, for<'a> fn(<T as Project>::Assoc<'a>)) {}
impl<'a> Trait for (u32, fn(&'a u32)) {}
//[next]~^ ERROR conflicting implementations of trait `Trait` for type `(u32, for<'a> fn(&'a u32))`
```
A crater run did not discover any breakage due to this change.
#### Unknowable candidates for higher ranked trait goals
This avoids an unsoundness by attempting to normalize in `trait_ref_is_knowable`, fixing https://github.com/rust-lang/rust/issues/114061. This is a side-effect of supporting lazy normalization, as that forces us to attempt to normalize when checking whether a `TraitRef` is knowable: [source](47dd709bed/compiler/rustc_trait_selection/src/solve/assembly/mod.rs (L754-L764)).
```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
trait IsUnit {}
impl IsUnit for () {}
pub trait WithAssoc<'a> {
type Assoc;
}
// We considered `for<'a> <T as WithAssoc<'a>>::Assoc: IsUnit`
// to be knowable, even though the projection is ambiguous.
pub trait Trait {}
impl<T> Trait for T
where
T: 'static,
for<'a> T: WithAssoc<'a>,
for<'a> <T as WithAssoc<'a>>::Assoc: IsUnit,
{
}
impl<T> Trait for Box<T> {}
//[next]~^ ERROR conflicting implementations of trait `Trait`
```
The two impls of `Trait` overlap given the following downstream crate:
```rust
use dep::*;
struct Local;
impl WithAssoc<'_> for Box<Local> {
type Assoc = ();
}
```
There a similar coherence unsoundness caused by our handling of aliases which is fixed separately in https://github.com/rust-lang/rust/pull/117164.
This change breaks the [`derive-visitor`](https://crates.io/crates/derive-visitor) crate. I have opened an issue in that repo: nikis05/derive-visitor#16.
### Evaluating goals to a fixpoint and applying inference constraints
In the old implementation of the implicit-negative check, each obligation is [checked separately without applying its inference constraints](bea5bebf3d/compiler/rustc_trait_selection/src/traits/coherence.rs (L323-L338)). The new solver instead [uses a `FulfillmentCtxt`](bea5bebf3d/compiler/rustc_trait_selection/src/traits/coherence.rs (L315-L321)) for this, which evaluates all obligations in a loop until there's no further inference progress.
This is necessary for backwards compatibility as we do not eagerly normalize with the new solver, resulting in constraints from normalization to only get applied by evaluating a separate obligation. This also allows more code to compile:
```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
trait Mirror {
type Assoc;
}
impl<T> Mirror for T {
type Assoc = T;
}
trait Foo {}
trait Bar {}
// The self type starts out as `?0` but is constrained to `()`
// due to the where-clause below. Because `(): Bar` is known to
// not hold, we can prove the impls disjoint.
impl<T> Foo for T where (): Mirror<Assoc = T> {}
//[current]~^ ERROR conflicting implementations of trait `Foo` for type `()`
impl<T> Foo for T where T: Bar {}
fn main() {}
```
The old solver does not run nested goals to a fixpoint in evaluation. The new solver does do so, strengthening inference and improving the overlap check:
```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
trait Foo {}
impl<T> Foo for (u8, T, T) {}
trait NotU8 {}
trait Bar {}
impl<T, U: NotU8> Bar for (T, T, U) {}
trait NeedsFixpoint {}
impl<T: Foo + Bar> NeedsFixpoint for T {}
impl NeedsFixpoint for (u8, u8, u8) {}
trait Overlap {}
impl<T: NeedsFixpoint> Overlap for T {}
impl<T, U: NotU8, V> Overlap for (T, U, V) {}
//[current]~^ ERROR conflicting implementations of trait `Foo`
```
### Breakage due to removal of incomplete candidate preference
Fixes#107887. In the old solver we incompletely prefer the builtin trait object impl over user defined impls. This can break inference guidance, inferring `?x` in `dyn Trait<u32>: Trait<?x>` to `u32`, even if an explicit impl of `Trait<u64>` also exists.
This caused coherence to incorrectly allow overlapping impls, resulting in ICEs and a theoretical unsoundness. See https://github.com/rust-lang/rust/issues/107887#issuecomment-1997261676. This compiles on stable but results in an overlap error with `-Znext-solver=coherence`:
```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
struct W<T: ?Sized>(*const T);
trait Trait<T: ?Sized> {
type Assoc;
}
// This would trigger the check for overlap between automatic and custom impl.
// They actually don't overlap so an impl like this should remain possible
// forever.
//
// impl Trait<u64> for dyn Trait<u32> {}
trait Indirect {}
impl Indirect for dyn Trait<u32, Assoc = ()> {}
impl<T: Indirect + ?Sized> Trait<u64> for T {
type Assoc = ();
}
// Incomplete impl where `dyn Trait<u32>: Trait<_>` does not hold, but
// `dyn Trait<u32>: Trait<u64>` does.
trait EvaluateHack<U: ?Sized> {}
impl<T: ?Sized, U: ?Sized> EvaluateHack<W<U>> for T
where
T: Trait<U, Assoc = ()>, // incompletely constrains `_` to `u32`
U: IsU64,
T: Trait<U, Assoc = ()>, // incompletely constrains `_` to `u32`
{
}
trait IsU64 {}
impl IsU64 for u64 {}
trait Overlap<U: ?Sized> {
type Assoc: Default;
}
impl<T: ?Sized + EvaluateHack<W<U>>, U: ?Sized> Overlap<U> for T {
type Assoc = Box<u32>;
}
impl<U: ?Sized> Overlap<U> for dyn Trait<u32, Assoc = ()> {
//[next]~^ ERROR conflicting implementations of trait `Overlap<_>`
type Assoc = usize;
}
```
### Considering region outlives bounds in the `leak_check`
For details on the `leak_check`, see the FCP proposal #119820.[^leak_check]
[^leak_check]: which should get moved to the dev-guide :3
In both coherence and during candidate selection, the `leak_check` relies on the region constraints added in `evaluate`. It therefore currently does not register outlives obligations: [source](ccb1415eac/compiler/rustc_trait_selection/src/traits/select/mod.rs (L792-L810)). This was likely done as a performance optimization without considering its impact on the `leak_check`. This is the case as in the old solver, *evaluatation* and *fulfillment* are split, with evaluation being responsible for candidate selection and fulfillment actually registering all the constraints.
This split does not exist with the new solver. The `leak_check` can therefore eagerly detect errors caused by region outlives obligations. This improves both coherence itself and candidate selection:
```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
trait LeakErr<'a, 'b> {}
// Using this impl adds an `'b: 'a` bound which results
// in a higher-ranked region error. This bound has been
// previously ignored but is now considered.
impl<'a, 'b: 'a> LeakErr<'a, 'b> for () {}
trait NoOverlapDir<'a> {}
impl<'a, T: for<'b> LeakErr<'a, 'b>> NoOverlapDir<'a> for T {}
impl<'a> NoOverlapDir<'a> for () {}
//[current]~^ ERROR conflicting implementations of trait `NoOverlapDir<'_>`
// --------------------------------------
// necessary to avoid coherence unknowable candidates
struct W<T>(T);
trait GuidesSelection<'a, U> {}
impl<'a, T: for<'b> LeakErr<'a, 'b>> GuidesSelection<'a, W<u32>> for T {}
impl<'a, T> GuidesSelection<'a, W<u8>> for T {}
trait NotImplementedByU8 {}
trait NoOverlapInd<'a, U> {}
impl<'a, T: GuidesSelection<'a, W<U>>, U> NoOverlapInd<'a, U> for T {}
impl<'a, U: NotImplementedByU8> NoOverlapInd<'a, U> for () {}
//[current]~^ conflicting implementations of trait `NoOverlapInd<'_, _>`
```
### Removal of `fn match_fresh_trait_refs`
The old solver tries to [eagerly detect unbounded recursion](b14fd2359f/compiler/rustc_trait_selection/src/traits/select/mod.rs (L1196-L1211)), forcing the affected goals to be ambiguous. This check is only an approximation and has not been added to the new solver.
The check is not necessary in the new solver and it would be problematic for caching. As it depends on all goals currently on the stack, using a global cache entry would have to always make sure that doing so does not circumvent this check.
This changes some goals to error - or succeed - instead of failing with ambiguity. This allows more code to compile:
```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
// Need to use this local wrapper for the impls to be fully
// knowable as unknowable candidate result in ambiguity.
struct Local<T>(T);
trait Trait<U> {}
// This impl does not hold, but is ambiguous in the old
// solver due to its overflow approximation.
impl<U> Trait<U> for Local<u32> where Local<u16>: Trait<U> {}
// This impl holds.
impl Trait<Local<()>> for Local<u8> {}
// In the old solver, `Local<?t>: Trait<Local<?u>>` is ambiguous,
// resulting in `Local<?u>: NoImpl`, also being ambiguous.
//
// In the new solver the first impl does not apply, constraining
// `?u` to `Local<()>`, causing `Local<()>: NoImpl` to error.
trait Indirect<T> {}
impl<T, U> Indirect<U> for T
where
T: Trait<U>,
U: NoImpl
{}
// Not implemented for `Local<()>`
trait NoImpl {}
impl NoImpl for Local<u8> {}
impl NoImpl for Local<u16> {}
// `Local<?t>: Indirect<Local<?u>>` cannot hold, so
// these impls do not overlap.
trait NoOverlap<U> {}
impl<T: Indirect<U>, U> NoOverlap<U> for T {}
impl<T, U> NoOverlap<Local<U>> for Local<T> {}
//~^ ERROR conflicting implementations of trait `NoOverlap<Local<_>>`
```
### Non-fatal overflow
The old solver immediately emits a fatal error when hitting the recursion limit. The new solver instead returns overflow. This both allows more code to compile and is results in performance and potential future compatability issues.
Non-fatal overflow is generally desirable. With fatal overflow, changing the order in which we evaluate nested goals easily causes breakage if we have goal which errors and one which overflows. It is also required to prevent breakage due to the removal of `fn match_fresh_trait_refs`, e.g. [in `typenum`](https://github.com/rust-lang/trait-system-refactor-initiative/issues/73).
#### Enabling more code to compile
In the below example, the old solver first tried to prove an overflowing goal, resulting in a fatal error. The new solver instead returns ambiguity due to overflow for that goal, causing the implicit negative overlap check to succeed as `Box<u32>: NotImplemented` does not hold.
```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
//[current] ERROR overflow evaluating the requirement
trait Indirect<T> {}
impl<T: Overflow<()>> Indirect<T> for () {}
trait Overflow<U> {}
impl<T, U> Overflow<U> for Box<T>
where
U: Indirect<Box<Box<T>>>,
{}
trait NotImplemented {}
trait Trait<U> {}
impl<T, U> Trait<U> for T
where
// T: NotImplemented, // causes old solver to succeed
U: Indirect<T>,
T: NotImplemented,
{}
impl Trait<()> for Box<u32> {}
```
#### Avoiding hangs with non-fatal overflow
Simply returning ambiguity when reaching the recursion limit can very easily result in hangs, e.g.
```rust
trait Recur {}
impl<T, U> Recur for ((T, U), (U, T))
where
(T, U): Recur,
(U, T): Recur,
{}
trait NotImplemented {}
impl<T: NotImplemented> Recur for T {}
```
This can happen quite frequently as it's easy to have exponential blowup due to multiple nested goals at each step. As the trait solver is depth-first, this immediately caused a fatal overflow error in the old solver. In the new solver we have to handle the whole proof tree instead, which can very easily hang.
To avoid this we restrict the recursion depth after hitting the recursion limit for the first time. We also **ignore all inference constraints from goals resulting in overflow**. This is mostly backwards compatible as any overflow in the old solver resulted in a fatal error.
### sidenote about normalization
We return ambiguous nested goals of `NormalizesTo` goals to the caller and ignore their impact when computing the `Certainty` of the current goal. See the [normalization chapter](https://rustc-dev-guide.rust-lang.org/solve/normalization.html) for more details.This means we apply constraints resulting from other nested goals and from equating the impl header when normalizing, even if a nested goal results in overflow. This is necessary to avoid breaking the following example:
```rust
trait Trait {
type Assoc;
}
struct W<T: ?Sized>(*mut T);
impl<T: ?Sized> Trait for W<W<T>>
where
W<T>: Trait,
{
type Assoc = ();
}
// `W<?t>: Trait<Assoc = u32>` does not hold as
// `Assoc` gets normalized to `()`. However, proving
// the where-bounds of the impl results in overflow.
//
// For this to continue to compile we must not discard
// constraints from normalizing associated types.
trait NoOverlap {}
impl<T: Trait<Assoc = u32>> NoOverlap for T {}
impl<T: ?Sized> NoOverlap for W<T> {}
```
#### Future compatability concerns
Non-fatal overflow results in some unfortunate future compatability concerns. Changing the approach to avoid more hangs by more strongly penalizing overflow can cause breakage as we either drop constraints or ignore candidates necessary to successfully compile. Weakening the overflow penalities instead allows more code to compile and strengthens inference while potentially causing more code to hang.
While the current approach is not perfect, we believe it to be good enough. We believe it to apply the necessary inference constraints to avoid breakage and expect there to not be any desirable patterns broken by our current penalities. Similarly we believe the current constraints to avoid most accidental hangs. Ignoring constraints of overflowing goals is especially useful, as it may allow major future optimizations to our overflow handling. See [this summary](https://hackmd.io/ATf4hN0NRY-w2LIVgeFsVg) and the linked documents in case you want to know more.
### changes to performance
In general, trait solving during coherence checking is not significant for performance. Enabling the next-generation trait solver in coherence does not impact our compile time benchmarks. We are still unable to compile the benchmark suite when fully enabling the new trait solver.
There are rare cases where the new solver has significantly worse performance due to non-fatal overflow, its reliance on fixpoint algorithms and the removal of the `fn match_fresh_trait_refs` approximation. We encountered such issues in [`typenum`](https://crates.io/crates/typenum) and believe it should be [pretty much as bad as it can get](https://github.com/rust-lang/trait-system-refactor-initiative/issues/73).
Due to an improved structure and far better caching, we believe that there is a lot of room for improvement and that the new solver will outperform the existing implementation in nearly all cases, sometimes significantly. We have not yet spent any time micro-optimizing the implementation and have many unimplemented major improvements, such as fast-paths for trivial goals.
### Unstable features
#### Unsupported unstable features
The new solver currently does not support all unstable features, most notably `#![feature(generic_const_exprs)]`, `#![feature(associated_const_equality)]` and `#![feature(adt_const_params)]` are not yet fully supported in the new solver. We are confident that supporting them is possible, but did not consider this to be a priority. This stabilization introduces new ICE when using these features in impl headers.
#### fixes to `#![feature(specialization)]`
- fixes#105782
- fixes#118987
#### fixes to `#![feature(type_alias_impl_trait)]`
- fixes#119272
- https://github.com/rust-lang/rust/issues/105787#issuecomment-1750112388
- fixes#124207
### Important changes since the original FCP
https://github.com/rust-lang/rust/pull/127574 changes the coherence unknowable candidate to only apply if all the super trait bounds may hold. This allows more code to compile and fixes a regression in `pyella`
https://github.com/rust-lang/rust/pull/130617 bails with ambiguity if the query response would contain too many non-region inference variables. This should only be triggered in case the result contains a lot of ambiguous aliases in which case further constraining the goal should resolve this.
https://github.com/rust-lang/rust/pull/130821 adds caching to a lot of type folders, which is necessary to handle exponentially large types and handles the hang in `nalgebra` together with #130617.
## This does not stabilize the whole solver
While this stabilizes the use of the new solver in coherence checking, there are many parts of the solver which will remain fully unstable. We may still adapt these areas while working towards stabilizing the new solver everywhere. We are confident that we are able to do so without negatively impacting coherence.
### goals with a non-empty `ParamEnv`
Coherence always uses an empty environment. We therefore do not depend on the behavior of `AliasBound` and `ParamEnv` candidates. We only stabilizes the behavior of user-defined and builtin implementations of traits. There are still many open questions there.
### opaque types in the defining scope
The handling of opaque types - `impl Trait` - in both the new and old solver is still not fully figured out. Luckily this can be ignored for now. While opaque types are reachable during coherence checking by using `impl_trait_in_associated_types`, the behavior during coherence is separate and self-contained. The old and new solver fully agree here.
### normalization is hard
This stabilizes that we equate associated types involving bound variables using deferred-alias-equality. We also stop eagerly normalizing in coherence, which should not have any user-facing impact.
We do not stabilize the normalization behavior outside of coherence, e.g. we currently deeply normalize all types during writeback with the new solver. This may change going forward
### how to replace `select` from the old solver
We sometimes depend on getting a single `impl` for a given trait bound, e.g. when resolving a concrete method for codegen/CTFE. We do not depend on this during coherence, so the exact approach here can still be freely changed going forward.
## Acknowledgements
This work would not have been possible without `@compiler-errors.` He implemented large chunks of the solver himself but also and did a lot of testing and experimentation, eagerly discovering multiple issues which had a significant impact on our approach. `@BoxyUwU` has also done some amazing work on the solver. Thank you for the endless hours of discussion resulting in the current approach. Especially the way aliases are handled has gone through multiple revisions to get to its current state.
There were also many contributions from - and discussions with - other members of the community and the rest of `@rust-lang/types.` This solver builds upon previous improvements to the compiler, as well as lessons learned from `chalk` and `a-mir-formality`. Getting to this point would not have been possible without that and I am incredibly thankful to everyone involved. See the [list of relevant PRs](https://github.com/rust-lang/rust/pulls?q=is%3Apr+is%3Amerged+label%3AWG-trait-system-refactor+-label%3Arollup+closed%3A%3C2024-03-22+).
To fix the linker errors, we need to set the output extension to `.js` instead
of `.wasm`. Setting the output to a `.wasm` file puts Emscripten into standalone
mode which is effectively a distinct target. We need to set the runner to be
`node` as well.
This fixes most of the ui tests. I fixed a few more tests with simple problems:
- `intrinsics/intrinsic-alignment.rs` and `structs-enums/rec-align-u64.rs` --
Two `#[cfg]` macros match for Emscripten so we got a duplicate definition of
`mod m`.
- `issues/issue-12699.rs` -- Seems to hang so I disabled it
- `process/process-sigpipe.rs` -- Not expected to work on Emscripten so I
disabled it
Rollup of 9 pull requests
Successful merges:
- #122670 (Fix bug where `option_env!` would return `None` when env var is present but not valid Unicode)
- #131095 (Use environment variables instead of command line arguments for merged doctests)
- #131339 (Expand set_ptr_value / with_metadata_of docs)
- #131652 (Move polarity into `PolyTraitRef` rather than storing it on the side)
- #131675 (Update lint message for ABI not supported)
- #131681 (Fix up-to-date checking for run-make tests)
- #131702 (Suppress import errors for traits that couldve applied for method lookup error)
- #131703 (Resolved python deprecation warning in publish_toolstate.py)
- #131710 (Remove `'apostrophes'` from `rustc_parse_format`)
r? `@ghost`
`@rustbot` modify labels: rollup
Some float methods are now `const fn` under the `const_float_methods` feature gate.
In order to support `min`, `max`, `abs` and `copysign`, the implementation of some intrinsics had to be moved from Miri to rustc_const_eval.
Add `&pin (mut|const) T` type position sugar
This adds parser support for `&pin mut T` and `&pin const T` references. These are desugared to `Pin<&mut T>` and `Pin<&T>` in the AST lowering phases.
This PR currently includes #130526 since that one is in the commit queue. Only the most recent commits (bd450027eb4a94b814a7dd9c0fa29102e6361149 and following) are new.
Tracking:
- #130494
r? `@compiler-errors`
Remove `'apostrophes'` from `rustc_parse_format`
The rest of the compiler uses \`grave accents\`, while `rustc_parse_format` uses \`'apostrophes.'\`
Also makes the crate compile as a stand-alone:
```
~/rust/compiler/rustc_parse_format $ cargo check
Compiling rustc_index_macros v0.0.0 (/home/lieselotte/rust/compiler/rustc_index_macros)
error[E0277]: `syn::Lit` doesn't implement `Debug`
--> compiler/rustc_index_macros/src/newtype.rs:52:57
|
52 | panic!("Specified multiple max: {old:?}");
| ^^^^^^^ `syn::Lit` cannot be formatted using `{:?}` because it doesn't implement `Debug`
|
= help: the trait `Debug` is not implemented for `syn::Lit`
= note: this error originates in the macro `$crate::const_format_args` which comes from the expansion of the macro `panic` (in Nightly builds, run with -Z macro-backtrace for more info)
error[E0277]: `syn::Lit` doesn't implement `Debug`
--> compiler/rustc_index_macros/src/newtype.rs:64:74
|
64 | panic!("Specified multiple debug format options: {old:?}");
| ^^^^^^^ `syn::Lit` cannot be formatted using `{:?}` because it doesn't implement `Debug`
|
= help: the trait `Debug` is not implemented for `syn::Lit`
= note: this error originates in the macro `$crate::const_format_args` which comes from the expansion of the macro `panic` (in Nightly builds, run with -Z macro-backtrace for more info)
For more information about this error, try `rustc --explain E0277`.
error: could not compile `rustc_index_macros` (lib) due to 2 previous errors
```
`@rustbot` label +A-diagnostics
Suppress import errors for traits that couldve applied for method lookup error
Self-explanatory. I hit this quite often when refactoring in rustc, so even though this isn't really showing up as significant in the UI test suite, it probably will matter more for multi-module projects.
Update lint message for ABI not supported
Tracking issue: #130260
As requested in https://github.com/rust-lang/rust/pull/128784#pullrequestreview-2364026550 I updated the error message.
I could also change it to be the same message as if it was a hard error on a normal function:
> "`{abi}` is not a supported ABI for the current target"
Or would that get confusing when people try to google the error message?
r? compiler-errors
Autodiff Upstreaming - enzyme frontend
This is an upstream PR for the `autodiff` rustc_builtin_macro that is part of the autodiff feature.
For the full implementation, see: https://github.com/rust-lang/rust/pull/129175
**Content:**
It contains a new `#[autodiff(<args>)]` rustc_builtin_macro, as well as a `#[rustc_autodiff]` builtin attribute.
The autodiff macro is applied on function `f` and will expand to a second function `df` (name given by user).
It will add a dummy body to `df` to make sure it type-checks. The body will later be replaced by enzyme on llvm-ir level,
we therefore don't really care about the content. Most of the changes (700 from 1.2k) are in `compiler/rustc_builtin_macros/src/autodiff.rs`, which expand the macro. Nothing except expansion is implemented for now.
I have a fallback implementation for relevant functions in case that rustc should be build without autodiff support. The default for now will be off, although we want to flip it later (once everything landed) to on for nightly. For the sake of CI, I have flipped the defaults, I'll revert this before merging.
**Dummy function Body:**
The first line is an `inline_asm` nop to make inlining less likely (I have additional checks to prevent this in the middle end of rustc. If `f` gets inlined too early, we can't pass it to enzyme and thus can't differentiate it.
If `df` gets inlined too early, the call site will just compute this dummy code instead of the derivatives, a correctness issue. The following black_box lines make sure that none of the input arguments is getting optimized away before we replace the body.
**Motivation:**
The user facing autodiff macro can verify the user input. Then I write it as args to the rustc_attribute, so from here on I can know that these values should be sensible. A rustc_attribute also turned out to be quite nice to attach this information to the corresponding function and carry it till the backend.
This is also just an experiment, I expect to adjust the user facing autodiff macro based on user feedback, to improve usability.
As a simple example of what this will do, we can see this expansion:
From:
```
#[autodiff(df, Reverse, Duplicated, Const, Active)]
pub fn f1(x: &[f64], y: f64) -> f64 {
unimplemented!()
}
```
to
```
#[rustc_autodiff]
#[inline(never)]
pub fn f1(x: &[f64], y: f64) -> f64 {
::core::panicking::panic("not implemented")
}
#[rustc_autodiff(Reverse, Duplicated, Const, Active,)]
#[inline(never)]
pub fn df(x: &[f64], dx: &mut [f64], y: f64, dret: f64) -> f64 {
unsafe { asm!("NOP"); };
::core::hint::black_box(f1(x, y));
::core::hint::black_box((dx, dret));
::core::hint::black_box(f1(x, y))
}
```
I will add a few more tests once I figured out why rustc rebuilds every time I touch a test.
Tracking:
- https://github.com/rust-lang/rust/issues/124509
try-job: dist-x86_64-msvc
Special treatment empty tuple when suggest adding a string literal in format macro.
For example:
```rust
let s = "123";
println!({}, "sss", s);
```
Suggest:
`println!("{:?} {} {}", {}, "sss", s);`
fixes#130170
Update precondition tests (especially for zero-size access to null)
I don't much like the current way I've updated the precondition check helpers, but I couldn't come up with anything better. Ideas welcome.
I've organized `tests/ui/precondition-checks` mostly with one file per function that has `assert_unsafe_precondition` in it, with revisions that check each precondition. The important new test is `tests/ui/precondition-checks/zero-size-null.rs`.
Fix clobber_abi and disallow SVE-related registers in Arm64EC inline assembly
Currently `clobber_abi` in Arm64EC inline assembly is implemented using `InlineAsmClobberAbi::AArch64NoX18`, but broken since it attempts to clobber registers that cannot be used in Arm64EC: https://godbolt.org/z/r3PTrGz5r
```
error: cannot use register `x13`: x13, x14, x23, x24, x28, v16-v31 cannot be used for Arm64EC
--> <source>:6:14
|
6 | asm!("", clobber_abi("C"), options(nostack, nomem, preserves_flags));
| ^^^^^^^^^^^^^^^^
error: cannot use register `x14`: x13, x14, x23, x24, x28, v16-v31 cannot be used for Arm64EC
--> <source>:6:14
|
6 | asm!("", clobber_abi("C"), options(nostack, nomem, preserves_flags));
| ^^^^^^^^^^^^^^^^
<omitted the same errors for v16-v31>
```
Additionally, this disallows SVE-related registers per https://github.com/rust-lang/rust/pull/131332#issuecomment-2401189142.
cc ``@dpaoliello``
r? ``@Amanieu``
``@rustbot`` label O-windows O-AArch64 +A-inline-assembly
Remap path prefix in the panic message of `tests/ui/meta/revision-bad.rs`
Otherwise `error-pattern` on the test run stderr can incorrectly match if the paths in panic backtrace has a matching substring (like if we look for `bar` in the error pattern, but the username is `baron`).
Tested locally by checking run output `./x test .\tests\ui\meta\revision-bad.rs -- -- --nocapture`:
```
--- stderr -------------------------------
thread 'main' panicked at remapped\meta\revision-bad.rs:14:5:
foo
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
------------------------------------------
```
Fixes#130996.
Check ABI target compatibility for function pointers
Tracking issue: https://github.com/rust-lang/rust/issues/130260
Related tracking issue: #87678
Compatibility of an ABI for a target was previously only performed on function definitions and `extern` blocks. This PR adds it also to function pointers to be consistent.
This might have broken some of the `tests/ui/` depending on the platform, so a try run seems like a good idea.
Also this might break existing code, because we now emit extra errors. Does this require a crater run?
# Example
```rust
// build with: --target=x86_64-unknown-linux-gnu
// These raise E0570
extern "thiscall" fn foo() {}
extern "thiscall" { fn bar() }
// This did not raise any error
fn baz(f: extern "thiscall" fn()) { f() }
```
# Open Questions
* [x] Should this report a future incompatibility warning like #87678 ?
* [ ] Is this the best place to perform the check?
std: fix stdout-before-main
Fixes#130210.
Since #124881, `ReentrantLock` uses `ThreadId` to identify threads. This has the unfortunate consequence of breaking uses of `Stdout` before main: Locking the `ReentrantLock` that synchronizes the output will initialize the thread ID before the handle for the main thread is set in `rt::init`. But since that would overwrite the current thread ID, `thread::set_current` triggers an abort.
This PR fixes the problem by using the already initialized thread ID for constructing the main thread handle and allowing `set_current` calls that do not change the thread's ID.
Stabilize const `ptr::write*` and `mem::replace`
Since `const_mut_refs` and `const_refs_to_cell` have been stabilized, we may now also stabilize the ability to write to places during const evaluation inside our library API. So, we now propose the `const fn` version of `ptr::write` and its variants. This allows us to also stabilize `mem::replace` and `ptr::replace`.
- const `mem::replace`: https://github.com/rust-lang/rust/issues/83164#issuecomment-2338660862
- const `ptr::write{,_bytes,_unaligned}`: https://github.com/rust-lang/rust/issues/86302#issuecomment-2330275266
Their implementation requires an additional internal stabilization of `const_intrinsic_forget`, which is required for `*::write*` and thus `*::replace`. Thus we const-stabilize the internal intrinsics `forget`, `write_bytes`, and `write_via_move`.
Add suggestion for removing invalid path sep `::` in fn def
Add suggestion for removing invalid path separator `::` in function definition.
for example: `fn invalid_path_separator::<T>() {}`
fixes#130791
Fixes#130210.
Since #124881, `ReentrantLock` uses `ThreadId` to identify threads. This has the unfortunate consequence of breaking uses of `Stdout` before main: Locking the `ReentrantLock` that synchronizes the output will initialize the thread ID before the handle for the main thread is set in `rt::init`. But since that would overwrite the current thread ID, `thread::set_current` triggers an abort.
This PR fixes the problem by using the already initialized thread ID for constructing the main thread handle and allowing `set_current` calls that do not change the thread's ID.
Remove deprecation note in the `non_local_definitions` lint
This PR removes the edition deprecation note emitted by the `non_local_definitions` lint.
Specifically this part:
```
= note: this lint may become deny-by-default in the edition 2024 and higher, see the tracking issue <https://github.com/rust-lang/rust/issues/120363>
```
because it [didn't make the cut](https://github.com/rust-lang/rust/issues/120363#issuecomment-2407833300) for the 2024 edition.
`@rustbot` label +L-non_local_definitions
Make unused_parens's suggestion considering expr's attributes.
For the expr with attributes,
like `let _ = (#[inline] || println!("Hello!"));`,
the suggestion's span should contains the attributes, or the suggestion will remove them.
fixes#129833
Otherwise `error-pattern` on the test run stderr can incorrectly match
if e.g. the paths in panic backtrace has a matching substring (like if
we look for `bar` in the error pattern but username is `baron`).
For the expr with attributes, like `let _ = (#[inline] || println!("Hello!"));`, the suggestion's span should contains the attributes, or the suggestion will remove them.
fixes#129833
Add intrinsics `fmuladd{f16,f32,f64,f128}`. This computes `(a * b) +
c`, to be fused if the code generator determines that (i) the target
instruction set has support for a fused operation, and (ii) that the
fused operation is more efficient than the equivalent, separate pair
of `mul` and `add` instructions.
https://llvm.org/docs/LangRef.html#llvm-fmuladd-intrinsic
MIRI support is included for f32 and f64.
The codegen_cranelift uses the `fma` function from libc, which is a
correct implementation, but without the desired performance semantic. I
think this requires an update to cranelift to expose a suitable
instruction in its IR.
I have not tested with codegen_gcc, but it should behave the same
way (using `fma` from libc).
Retire the `unnamed_fields` feature for now
`#![feature(unnamed_fields)]` was implemented in part in #115131 and #115367, however work on that feature has (afaict) stalled and in the mean time there have been some concerns raised (e.g.[^1][^2]) about whether `unnamed_fields` is worthwhile to have in the language, especially in its current desugaring. Because it represents a compiler implementation burden including a new kind of anonymous ADT and additional complication to field selection, and is quite prone to bugs today, I'm choosing to remove the feature.
However, since I'm not one to really write a bunch of words, I'm specifically *not* going to de-RFC this feature. This PR essentially *rolls back* the state of this feature to "RFC accepted but not yet implemented"; however if anyone wants to formally unapprove the RFC from the t-lang side, then please be my guest. I'm just not totally willing to summarize the various language-facing reasons for why this feature is or is not worthwhile, since I'm coming from the compiler side mostly.
Fixes#117942Fixes#121161Fixes#121263Fixes#121299Fixes#121722Fixes#121799Fixes#126969Fixes#131041
Tracking:
* https://github.com/rust-lang/rust/issues/49804
[^1]: https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/Unnamed.20struct.2Funion.20fields
[^2]: https://github.com/rust-lang/rust/issues/49804#issuecomment-1972619108
Consider outermost const-anon in `non_local_def` lint
This PR change the logic for finding the parent of the `impl` definition in the `non_local_definitions` lint to consider multiple level of const-anon items, instead of only one currently.
I also took the opportunity to cleanup the related code.
cc ``@traviscross``
Fixes https://github.com/rust-lang/rust/issues/131474
Compiler & its UI tests: Rename remaining occurrences of "object safe" to "dyn compatible"
Follow-up to #130826.
Part of #130852.
1. 1st commit: Fix stupid oversights. Should've been part of #130826.
2. 2nd commit: Rename the unstable feature `object_safe_for_dispatch` to `dyn_compatible_for_dispatch`. Might not be worth the churn, you decide.
3. 3rd commit: Apply the renaming to all UI tests (contents and paths).
Precise capturing in traits
This PR begins to implement `feature(precise_capturing_in_traits)`, which enables using the `impl Trait + use<..>` syntax for RPITITs. It implements this by giving the desugared GATs variance, and representing the uncaptured lifetimes as bivariant, like how opaque captures work.
Right now, I've left out implementing a necessary extension to the `refining_impl_trait` lint, and also I've made it so that all RPITITs always capture the parameters that come from the trait, because I'm not totally yet convinced that it's sound to not capture these args. It's certainly required to capture the type and const parameters from the trait (e.g. Self), or else users could bivariantly relate two RPITIT args that come from different impls, but region parameters don't affect trait selection in the same way, so it *may* be possible to relax this in the future. Let's stay conservative for now, though.
I'm not totally sure what tests could be added on top of the ones I already added, since we really don't need to exercise the `precise_capturing` feature but simply what makes it special for RPITITs.
r? types
Tracking issue:
* #130044
rustc_target: Add sme-b16b16 as an explicit aarch64 target feature
LLVM 20 split out what used to be called b16b16 and correspond to aarch64
FEAT_SVE_B16B16 into sve-b16b16 and sme-b16b16.
Add sme-b16b16 as an explicit feature and update the codegen accordingly.
Resolves https://github.com/rust-lang/rust/pull/129894.
codegen_ssa: consolidate tied target checks
Fixes#105110.
Fixes#105111.
`rustc_codegen_llvm` and `rustc_codegen_gcc` duplicated logic for checking if tied target features were partially enabled. This PR consolidates these checks into `rustc_codegen_ssa` in the `codegen_fn_attrs` query, which also is run pre-monomorphisation for each function, which ensures that this check is run for unused functions, as would be expected.
Also adds a test confirming that enabling one tied feature doesn't imply another - the appropriate error for this was already being emitted. I did a bisect and narrowed it down to two patches it was likely to be - something in #128796, probably #128221 or #128679.
Introduce SolverRelating type relation to the new solver
Redux of #128744.
Splits out relate for the new solver so that implementors don't need to implement it themselves.
r? lcnr
fix/update teach_note from 'escaping mutable ref/ptr' const-check
The old note was quite confusing since it talked about statics, but the message is also shown for consts. So let's reword to something that is true for both of them.
LLVM 20 split out what used to be called b16b16 and correspond to aarch64
FEAT_SVE_B16B16 into sve-b16b16 and sme-b16b16.
Add sme-b16b16 as an explicit feature and update the codegen accordingly.
Reserve guarded string literals (RFC 3593)
Implementation for RFC 3593, including:
- lexer / parser changes
- diagnostics
- migration lint
- tests
We reserve `#"`, `##"`, `###"`, `####`, and any other string of four or more repeated `#`. This avoids infinite lookahead in the lexer, though we still use infinite lookahead in the parser to provide better forward compatibility diagnostics.
This PR does not implement any special lexing of the string internals:
- strings preceded by one or more `#` are denied
- regardless of the number of trailing `#`
- string contents are lexed as if it was just a bare `"string"`
Tracking issue: #123735
RFC: rust-lang/rfcs#3593
Dont ICE when encountering post-mono layout cycle error
It's possible to encounter post-mono layout cycle errors in `fn_abi_of_instance`. Don't ICE in those cases.
This was originally discovered in an async fn, but that's not the only way to encounter such an error (which the other test I added should demonstrate).
Error messsages suck, but this fix is purely about suppressing the ICE.
Fixes#131409
[Coverage][MCDC] Adapt mcdc to llvm 19
Related issue: #126672
Also finish task 4 at #124144
[llvm #82448](https://github.com/llvm/llvm-project/pull/82448) has introduced some break changes into mcdc, causing incompatibility between llvm 18 and 19. This draft adapts to that change and gives up supporting for llvm-18.
Fix utf8-bom test
The BOM was accidentally removed in https://github.com/rust-lang/rust/pull/57108
I had to move the run-pass line down, because compiletest doesn't seem to know about BOMs, so it does not parse the header if it is the first line.
Add tests for some old fixed issues
Closes#30867Closes#30472Closes#28994Closes#26719 (and migrates the relevant test to the new run-make)
Closes#23600
cc `@jieyouxu` for the run-make-support changes
try-job: x86_64-msvc
Don't allow the `#[pointee]` attribute where it doesn't belong
Error if the `#[pointee]` attribute is applied to anything but generic type parameters.
Closes#128485
Related to #123430
liballoc: introduce String, Vec const-slicing
This change `const`-qualifies many methods on `Vec` and `String`, notably `as_slice`, `as_str`, `len`. These changes are made behind the unstable feature flag `const_vec_string_slice`.
## Motivation
This is to support simultaneous variance over ownership and constness. I have an enum type that may contain either `String` or `&str`, and I want to produce a `&str` from it in a possibly-`const` context.
```rust
enum StrOrString<'s> {
Str(&'s str),
String(String),
}
impl<'s> StrOrString<'s> {
const fn as_str(&self) -> &str {
match self {
// In a const-context, I really only expect to see this variant, but I can't switch the implementation
// in some mode like #[cfg(const)] -- there has to be a single body
Self::Str(s) => s,
// so this is a problem, since it's not `const`
Self::String(s) => s.as_str(),
}
}
}
```
Currently `String` and `Vec` don't support this, but can without functional changes. Similar logic applies for `len`, `capacity`, `is_empty`.
## Changes
The essential thing enabling this change is that `Unique::as_ptr` is `const`. This lets us convert `RawVec::ptr` -> `Vec::as_ptr` -> `Vec::as_slice` -> `String::as_str`.
I had to move the `Deref` implementations into `as_{str,slice}` because `Deref` isn't `#[const_trait]`, but I would expect this change to be invisible up to inlining. I moved the `DerefMut` implementations as well for uniformity.