Since LLVM <https://reviews.llvm.org/D99439> (4c7f820b2b20, "Update
@llvm.powi to handle different int sizes for the exponent"), the size of
the integer can be specified for the `powi` intrinsic. Make use of this
so it is more obvious that integer size is consistent across all float
types.
This feature is available since LLVM 13 (October 2021). Based on
bootstrap we currently support >= 17.0, so there should be no support
problems.
LLVM has updated data layouts to specify `Fn32` on 64-bit ARM to avoid
C++ accidentally underaligning functions when trying to comply with
member function ABIs.
This should only affect Rust in cases where we had a similar bug (I
don't believe we have one), but our data layout must match to generate
code.
As a compatibility adaptatation, if LLVM is not version 19 yet, `Fn32`
gets voided from the data layout.
See llvm/llvm-project#90415
various clippy fixes
We need to keep the order of the given clippy lint rules before passing them.
Since clap doesn't offer any useful interface for this purpose out of the box,
we have to handle it manually.
Additionally, this PR makes `-D` rules work as expected. Previously, lint rules were limited to `-W`. By enabling `-D`, clippy began to complain numerous lines in the tree, all of which have been resolved in this PR as well.
Fixes#121481
cc `@matthiaskrgr`
Remove the unused `field_remapping` field from `TypeLowering`
The `field_remapping` field of `TypeLowering` has been unused since #121665. This PR removes it, then replaces the `TypeLowering` struct with its only remaining member `&'ll Type`.
llvm: change data layout bug to an error and make it trigger more
Fixes#33446.
Don't skip the inconsistent data layout check for custom LLVMs or non-built-in targets.
With #118708, all targets will have a simple test that would trigger this error if LLVM's data layouts do change - so data layouts would be corrected during the LLVM upgrade. Therefore, with builtin targets, this error won't happen with our LLVM because each target will have been confirmed to work. With non-builtin targets, this error is probably useful to have because you can change the data layout in your target and if it is wrong then that could lead to bugs.
When using a custom LLVM, the same justification makes sense for non-builtin targets as with our LLVM, the user can update their target to match their LLVM and that's probably a good thing to do. However, with a custom LLVM, the user cannot change the builtin target data layouts if they don't match - though given that the compiler's data layout is used for layout computation and a bunch of other things - you could get some bugs because of the mismatch and probably want to know about that. I'm not sure if this is something that people do and is okay, but I doubt it?
`CFG_LLVM_ROOT` was also always set during local development with `download-ci-llvm` so this bug would never trigger locally.
In #33446, two points are raised:
- In the issue itself, changing this from a `bug!` to a proper error is what is suggested, by using `isCompatibleDataLayout` from LLVM, but that function still just does the same thing that we do and check for equality, so I've avoided the additional code necessary to do that FFI call.
- `@Mark-Simulacrum` suggests a different check is necessary to maintain backwards compatibility with old LLVM versions. I don't know how often this comes up, but we can do that with some simple string manipulation + LLVM version checks as happens already for LLVM 17 just above this diff.
Replacement of #114390: Add new intrinsic `is_var_statically_known` and optimize pow for powers of two
This adds a new intrinsic `is_val_statically_known` that lowers to [``@llvm.is.constant.*`](https://llvm.org/docs/LangRef.html#llvm-is-constant-intrinsic).` It also applies the intrinsic in the int_pow methods to recognize and optimize the idiom `2isize.pow(x)`. See #114390 for more discussion.
While I have extended the scope of the power of two optimization from #114390, I haven't added any new uses for the intrinsic. That can be done in later pull requests.
Note: When testing or using the library, be sure to use `--stage 1` or higher. Otherwise, the intrinsic will be a noop and the doctests will be skipped. If you are trying out edits, you may be interested in [`--keep-stage 0`](https://rustc-dev-guide.rust-lang.org/building/suggested.html#faster-builds-with---keep-stage).
Fixes#47234Resolves#114390
`@Centri3`
Fix overflow check
Make MIRI choose the path randomly and rename the intrinsic
Add back test
Add miri test and make it operate on `ptr`
Define `llvm.is.constant` for primitives
Update MIRI comment and fix test in stage2
Add const eval test
Clarify that both branches must have the same side effects
guaranteed non guarantee
use immediate type instead
Co-Authored-By: Ralf Jung <post@ralfj.de>
With https://reviews.llvm.org/D86310 LLVM now has i128 aligned to
16-bytes on x86 based platforms. This will be in LLVM-18. This patch
updates all our spec targets to be 16-byte aligned, and removes the
alignment when speaking to older LLVM.
This results in Rust overaligning things relative to LLVM on older LLVMs.
This alignment change was discussed in rust-lang/compiler-team#683
See #54341 for additional information about why this is happening and
where this will be useful in the future.
This *does not* stabilize `i128`/`u128` for FFI.
Don't skip the inconsistent data layout check for custom LLVMs.
With #118708, all targets will have a simple test that would trigger this
check if LLVM's data layouts do change - so data layouts would be
corrected during the LLVM upgrade. Therefore, with builtin targets, this
check won't trigger with our LLVM because each target will have been
confirmed to work. With non-builtin targets, this check is probably
useful to have because you can change the data layout in your target and
if its wrong then that could lead to bugs.
When using a custom LLVM, the same justification makes sense for
non-builtin targets as with our LLVM, the user can update their target to
match their LLVM and that's probably a good thing to do. However, with
a custom LLVM, the user cannot change the builtin target data layouts if
they don't match - though given that the compiler's data layout is used
for layout computation and a bunch of other things - you could get some
bugs because of the mismatch and probably want to know about that.
`CFG_LLVM_ROOT` was also always set during local development with
`download-ci-llvm` so this bug would never trigger locally.
Signed-off-by: David Wood <david@davidtw.co>
Currently LLVM uses emutls by default
for some targets (such as android, openbsd),
but rust does not use it, because `has_thread_local` is false.
This commit has some changes to allow users to enable emutls:
1. add `-Zhas-thread-local` flag to specify
that std uses `#[thread_local]` instead of pthread key.
2. when using emutls, decorate symbol names
to find thread local symbol correctly.
3. change `-Zforce-emulated-tls` to `-Ztls-model=emulated`
to explicitly specify whether to generate emutls.
In the future Windows will enable Control-flow Enforcement Technology
(CET aka Shadow Stacks). To protect the path where the context is
updated during exception handling, the binary is required to enumerate
valid unwind entrypoints in a dedicated section which is validated when
the context is being set during exception handling.
The required support for EHCONT has already been merged into LLVM,
long ago. This change adds the Rust codegen option to enable it.
Reference:
* https://reviews.llvm.org/D40223
This also adds a new `ehcont-guard` option to the bootstrap config which
enables EHCont Guard when building std.
Allow adding values to the `!llvm.module.flags` metadata for a generated
module. The syntax is
`-Z llvm_module_flag=<name>:<type>:<value>:<behavior>`
Currently only u32 values are supported but the type is required to be
specified for forward compatibility. The `behavior` element must match
one of the named LLVM metadata behaviors.viors.
This flag is expected to be perma-unstable.
Most notably, this commit changes the `pub use crate::*;` in that file
to `use crate::*;`. This requires a lot of `use` items in other crates
to be adjusted, because everything defined within `rustc_span::*` was
also available via `rustc_span::source_map::*`, which is bizarre.
The commit also removes `SourceMap::span_to_relative_line_string`, which
is unused.
Both GCC and Clang write by default a `.comment` section with compiler
information:
```txt
$ gcc -c -xc /dev/null && readelf -p '.comment' null.o
String dump of section '.comment':
[ 1] GCC: (GNU) 11.2.0
$ clang -c -xc /dev/null && readelf -p '.comment' null.o
String dump of section '.comment':
[ 1] clang version 14.0.1 (https://github.com/llvm/llvm-project.git c62053979489ccb002efe411c3af059addcb5d7d)
```
They also implement the `-Qn` flag to avoid doing so:
```txt
$ gcc -Qn -c -xc /dev/null && readelf -p '.comment' null.o
readelf: Warning: Section '.comment' was not dumped because it does not exist!
$ clang -Qn -c -xc /dev/null && readelf -p '.comment' null.o
readelf: Warning: Section '.comment' was not dumped because it does not exist!
```
So far, `rustc` only does it for WebAssembly targets and only
when debug info is enabled:
```txt
$ echo 'fn main(){}' | rustc --target=wasm32-unknown-unknown --emit=llvm-ir -Cdebuginfo=2 - && grep llvm.ident rust_out.ll
!llvm.ident = !{!27}
```
In the RFC part of this PR it was decided to always add
the information, which gets us closer to other popular compilers.
An opt-out flag like GCC and Clang may be added later on if deemed
necessary.
Implementation-wise, this covers both `ModuleLlvm::new()` and
`ModuleLlvm::new_metadata()` cases by moving the addition to
`context::create_module` and adds a few test cases.
ThinLTO also sees the `llvm.ident` named metadata duplicated (in
temporary outputs), so this deduplicates it like it is done for
`wasm.custom_sections`. The tests also check this duplication does
not take place.
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>