Move EH personality functions to std
These were previously in the panic_unwind crate with dummy stubs in the
panic_abort crate. However it turns out that this is insufficient: we
still need a proper personality function even with -C panic=abort to
handle the following cases:
1) `extern "C-unwind"` still needs to catch foreign exceptions with -C
panic=abort to turn them into aborts. This requires landing pads and a
personality function.
2) ARM EHABI uses the personality function when creating backtraces.
The dummy personality function in panic_abort was causing backtrace
generation to get stuck in a loop since the personality function is
responsible for advancing the unwind state to the next frame.
Fixes#41004
The indirection is no longer needed since we always link to libgcc
even when the panic_abort runtime is used. Instead we can just call
the libgcc functions directly.
These were previously in the panic_unwind crate with dummy stubs in the
panic_abort crate. However it turns out that this is insufficient: we
still need a proper personality function even with -C panic=abort to
handle the following cases:
1) `extern "C-unwind"` still needs to catch foreign exceptions with -C
panic=abort to turn them into aborts. This requires landing pads and a
personality function.
2) ARM EHABI uses the personality function when creating backtraces.
The dummy personality function in panic_abort was causing backtrace
generation to get stuck in a loop since the personality function is
responsible for advancing the unwind state to the next frame.
This resolves#85821. See also the discussion here:
https://github.com/emscripten-core/emscripten/issues/17128
The consensus seems to be that rust_eh_personality is never invoked.
I patched __gxx_personality_v0 to log invocations and then ran
various panic tests and it was never called, so this analysis matches
what seems to happen in practice. This replaces the definition with
an abort, modeled on the structured exception handling implementation.
- Fix style errors.
- L4-bender does not yet support dynamic linking.
- Stack unwinding is not yet supported for x86_64-unknown-l4re-uclibc.
For now, just abort on panics.
- Use GNU-style linker options where possible. As suggested by review:
- Use standard GNU-style ld syntax for relro flags.
- Use standard GNU-style optimization flags and logic.
- Use standard GNU-style ld syntax for --subsystem.
- Don't read environment variables in L4Bender linker. Thanks to
CARGO_ENCODED_RUSTFLAGS introduced in #9601, l4-bender's arguments can
now be passed from the L4Re build system without resorting to custom
parsing of environment variables.
This commit goes through and updates various `#[cfg]` as appropriate to
get the wasm64-unknown-unknown target behaving similarly to the
wasm32-unknown-unknown target. Most of this is just updating various
conditions for `target_arch = "wasm32"` to also account for `target_arch
= "wasm64"` where appropriate. This commit also lists `wasm64` as an
allow-listed architecture to not have the `restricted_std` feature
enabled, enabling experimentation with `-Z build-std` externally.
The main goal of this commit is to enable playing around with
`wasm64-unknown-unknown` externally via `-Z build-std` in a way that's
similar to the `wasm32-unknown-unknown` target. These targets are
effectively the same and only differ in their pointer size, but wasm64
is much newer and has much less ecosystem/library support so it'll still
take time to get wasm64 fully-fledged.
SOLID[1] is an embedded development platform provided by Kyoto
Microcomputer Co., Ltd. This commit introduces a basic Tier 3 support
for SOLID.
# New Targets
The following targets are added:
- `aarch64-kmc-solid_asp3`
- `armv7a-kmc-solid_asp3-eabi`
- `armv7a-kmc-solid_asp3-eabihf`
SOLID's target software system can be divided into two parts: an
RTOS kernel, which is responsible for threading and synchronization,
and Core Services, which provides filesystems, networking, and other
things. The RTOS kernel is a μITRON4.0[2][3]-derived kernel based on
the open-source TOPPERS RTOS kernels[4]. For uniprocessor systems
(more precisely, systems where only one processor core is allocated for
SOLID), this will be the TOPPERS/ASP3 kernel. As μITRON is
traditionally only specified at the source-code level, the ABI is
unique to each implementation, which is why `asp3` is included in the
target names.
More targets could be added later, as we support other base kernels
(there are at least three at the point of writing) and are interested
in supporting other processor architectures in the future.
# C Compiler
Although SOLID provides its own supported C/C++ build toolchain, GNU Arm
Embedded Toolchain seems to work for the purpose of building Rust.
# Unresolved Questions
A μITRON4 kernel can support `Thread::unpark` natively, but it's not
used by this commit's implementation because the underlying kernel
feature is also used to implement `Condvar`, and it's unclear whether
`std` should guarantee that parking tokens are not clobbered by other
synchronization primitives.
# Unsupported or Unimplemented Features
Most features are implemented. The following features are not
implemented due to the lack of native support:
- `fs::File::{file_attr, truncate, duplicate, set_permissions}`
- `fs::{symlink, link, canonicalize}`
- Process creation
- Command-line arguments
Backtrace generation is not really a good fit for embedded targets, so
it's intentionally left unimplemented. Unwinding is functional, however.
## Dynamic Linking
Dynamic linking is not supported. The target platform supports dynamic
linking, but enabling this in Rust causes several problems.
- The linker invocation used to build the shared object of `std` is
too long for the platform-provided linker to handle.
- A linker script with specific requirements is required for the
compiled shared object to be actually loadable.
As such, we decided to disable dynamic linking for now. Regardless, the
users can try to create shared objects by manually invoking the linker.
## Executable
Building an executable is not supported as the notion of "executable
files" isn't well-defined for these targets.
[1] https://solid.kmckk.com/SOLID/
[2] http://ertl.jp/ITRON/SPEC/mitron4-e.html
[3] https://en.wikipedia.org/wiki/ITRON_project
[4] https://toppers.jp/
This commit intends to fill out some of the remaining pieces of the
C-unwind ABI. This has a number of other changes with it though to move
this design space forward a bit. Notably contained within here is:
* On `panic=unwind`, the `extern "C"` ABI is now considered as "may
unwind". This fixes a longstanding soundness issue where if you
`panic!()` in an `extern "C"` function defined in Rust that's actually
UB because the LLVM representation for the function has the `nounwind`
attribute, but then you unwind.
* Whether or not a function unwinds now mainly considers the ABI of the
function instead of first checking the panic strategy. This fixes a
miscompile of `extern "C-unwind"` with `panic=abort` because that ABI
can still unwind.
* The aborting stub for non-unwinding ABIs with `panic=unwind` has been
reimplemented. Previously this was done as a small tweak during MIR
generation, but this has been moved to a separate and dedicated MIR
pass. This new pass will, for appropriate functions and function
calls, insert a `cleanup` landing pad for any function call that may
unwind within a function that is itself not allowed to unwind. Note
that this subtly changes some behavior from before where previously on
an unwind which was caught-to-abort it would run active destructors in
the function, and now it simply immediately aborts the process.
* The `#[unwind]` attribute has been removed and all users in tests and
such are now using `C-unwind` and `#![feature(c_unwind)]`.
I think this is largely the last piece of the RFC to implement.
Unfortunately I believe this is still not stabilizable as-is because
activating the feature gate changes the behavior of the existing `extern
"C"` ABI in a way that has no replacement. My thinking for how to enable
this is that we add support for the `C-unwind` ABI on stable Rust first,
and then after it hits stable we change the behavior of the `C` ABI.
That way anyone straddling stable/beta/nightly can switch to `C-unwind`
safely.
## User-facing changes
- Intra-doc links to primitives that currently go to rust-lang.org/nightly/std/primitive.x.html will start going to channel that rustdoc was built with. Nightly will continue going to /nightly; Beta will link to /beta; stable compilers will link to /1.52.1 (or whatever version they were built as).
- Cross-crate links from std to core currently go to /nightly unconditionally. They will start going to /1.52.0 on stable channels (but remain the same on nightly channels).
- Intra-crate links from std to std (or core to core) currently go to the same URL they are hosted at; they will continue to do so. Notably, this is different from everything else because it can preserve the distinction between /stable and /1.52.0 by using relative links.
Note that "links" includes both intra-doc links and rustdoc's own
automatically generated hyperlinks.
## Implementation changes
- Update the testsuite to allow linking to /beta and /1.52.1 in docs
- Use an html_root_url for the standard library that's dependent on the channel
This avoids linking to nightly docs on stable.
- Update rustdoc to use channel-dependent links for primitives from an
unknown crate
- Set DOC_RUST_LANG_ORG_CHANNEL from bootstrap to ensure it's in sync
- Include doc.rust-lang.org in the channel
Remove unused feature gates from library/ crates
Removes some unused feature gates from library crates. It's likely not a complete list as I only tested a subset for which it's more likely that it is unused.