Skip parenthesis around tuple struct field calls
The pretty-printer previously did not distinguish between named vs unnamed fields when printing a function call containing a struct field. It would print the call as `(self.fun)()` for a named field which is correct, and `(self.0)()` for an unnamed field which is redundant.
This PR changes function calls of tuple struct fields to print without parens.
**Before:**
```rust
struct Tuple(fn());
fn main() {
let tuple = Tuple(|| {});
(tuple.0)();
}
```
**After:**
```rust
struct Tuple(fn());
fn main() {
let tuple = Tuple(|| {});
tuple.0();
}
```
Precedence improvements: closures and jumps
This PR fixes some cases where rustc's pretty printers would redundantly parenthesize expressions that didn't need it.
<table>
<tr><th>Before</th><th>After</th></tr>
<tr><td><code>return (|x: i32| x)</code></td><td><code>return |x: i32| x</code></td></tr>
<tr><td><code>(|| -> &mut () { std::process::abort() }).clone()</code></td><td><code>|| -> &mut () { std::process::abort() }.clone()</code></td></tr>
<tr><td><code>(continue) + 1</code></td><td><code>continue + 1</code></td></tr>
</table>
Tested by `echo "fn main() { let _ = $AFTER; }" | rustc -Zunpretty=expanded /dev/stdin`.
The pretty-printer aims to render the syntax tree as it actually exists in rustc, as faithfully as possible, in Rust syntax. It can insert parentheses where forced by Rust's grammar in order to preserve the meaning of a macro-generated syntax tree, for example in the case of `a * $rhs` where $rhs is `b + c`. But for any expression parsed from source code, without a macro involved, there should never be a reason for inserting additional parentheses not present in the original.
For closures and jumps (return, break, continue, yield, do yeet, become) the unneeded parentheses came from the precedence of some of these expressions being misidentified. In the same order as the table above:
- Jumps and closures are supposed to have equal precedence. The [Rust Reference](https://doc.rust-lang.org/1.83.0/reference/expressions.html#expression-precedence) says so, and in Syn they do. There is no Rust syntax that would require making a precedence distinction between jumps and closures. But in rustc these were previously 2 distinct levels with the closure being lower, hence the parentheses around a closure inside a jump (but not a jump inside a closure).
- When a closure is written with an explicit return type, the grammar [requires](https://doc.rust-lang.org/1.83.0/reference/expressions/closure-expr.html) that the closure body consists of exactly one block expression, not any other arbitrary expression as usual for closures. Parsing of the closure body does not continue after the block expression. So in `|| { 0 }.clone()` the clone is inside the closure body and applies to `{ 0 }`, whereas in `|| -> _ { 0 }.clone()` the clone is outside and applies to the closure as a whole.
- Continue never needs parentheses. It was previously marked as having the lowest possible precedence but it should have been the highest, next to paths and loops and function calls, not next to jumps.
Add test to check unicode identifier version
This adds a test to verify which version of Unicode is used for identifiers. This is part of the language, documented at https://doc.rust-lang.org/nightly/reference/identifiers.html#r-ident.unicode. The version here often changes implicitly due to dependency updates pulling in new versions, and thus we often don't notice it has changed leaving the documentation out of date. The intent here is to have a canary to give us a notification when it changes so that we can update the documentation.
It was inconsistently done (sometimes even within a single function) and
most of the rest of the compiler uses fatal errors instead, which need
to be caught using catch_with_exit_code anyway. Using fatal errors
instead of ErrorGuaranteed everywhere in the driver simplifies things a
bit.
Some more refactorings towards removing driver queries
Follow up to https://github.com/rust-lang/rust/pull/127184
## Custom driver breaking change
The `after_analysis` callback is changed to accept `TyCtxt` instead of `Queries`. The only safe query in `Queries` to call at this point is `global_ctxt()` which allows you to enter the `TyCtxt` either way. To fix your custom driver, replace the `queries: &'tcx Queries<'tcx>` argument with `tcx: TyCtxt<'tcx>` and remove your `queries.global_ctxt().unwrap().enter(|tcx| { ... })` call and only keep the contents of the closure.
## Custom driver deprecation
The `after_crate_root_parsing` callback is now deprecated. Several custom drivers are incorrectly calling `queries.global_ctxt()` from inside of it, which causes some driver code to be skipped. As such I would like to either remove it in the future or if custom drivers still need it, change it to accept an `&rustc_ast::Crate` instead.
[StableMIR] API to retrieve definitions from crates
Add functions to retrieve function definitions and static items from all crates (local and external).
For external crates, we're still missing items from trait implementation and primitives.
r? ````@compiler-errors:```` Do you know what is the best way to retrieve the associated items for primitives and trait implementations for external crates? Thanks!
Add functions to retrieve function definitions and static items from
all crates (local and external).
For external crates, add a query to retrieve the number of defs in a
foreign crate.
This is consistent with all other diagnostics I could find containing
features and enables the use of `DiagSymbolList` for generalizing
diagnostics for unstable library features to multiple features.
Replace some LLVMRust wrappers with calls to the LLVM C API
This PR removes the LLVMRust wrapper functions for getting/setting linkage and visibility, and replaces them with direct calls to the corresponding functions in LLVM's C API.
To make this convenient and sound, two pieces of supporting code have also been added:
- A simple proc-macro that derives `TryFrom<u32>` for fieldless enums
- A wrapper type for C enum values returned by LLVM functions, to ensure soundness if LLVM returns an enum value we don't know about
In a few places, the use of safe wrapper functions means that an `unsafe` block is no longer needed, so the affected code has changed its indentation level.
Before this change, adding a lint was a difficult matter
because it always had some overhead involved. This was
because all lints would run, no matter their default level,
or if the user had #![allow]ed them. This PR changes that