LTA: Actually check where-clauses for well-formedness at the def site
All of the added tests used to wrongfully pass.
r? oli-obk or types/compiler or reassign
Target modifiers (special marked options) are recorded in metainfo
Target modifiers (special marked options) are recorded in metainfo and compared to be equal in different linked crates.
PR for this RFC: https://github.com/rust-lang/rfcs/pull/3716
Option may be marked as `TARGET_MODIFIER`, example: `regparm: Option<u32> = (None, parse_opt_number, [TRACKED TARGET_MODIFIER]`.
If an TARGET_MODIFIER-marked option has non-default value, it will be recorded in crate metainfo as a `Vec<TargetModifier>`:
```
pub struct TargetModifier {
pub opt: OptionsTargetModifiers,
pub value_name: String,
}
```
OptionsTargetModifiers is a macro-generated enum.
Option value code (for comparison) is generated using `Debug` trait.
Error example:
```
error: mixing `-Zregparm` will cause an ABI mismatch in crate `incompatible_regparm`
--> $DIR/incompatible_regparm.rs:10:1
|
LL | #![crate_type = "lib"]
| ^
|
= help: the `-Zregparm` flag modifies the ABI so Rust crates compiled with different values of this flag cannot be used together safely
= note: `-Zregparm=1` in this crate is incompatible with `-Zregparm=2` in dependency `wrong_regparm`
= help: set `-Zregparm=2` in this crate or `-Zregparm=1` in `wrong_regparm`
= help: if you are sure this will not cause problems, use `-Cunsafe-allow-abi-mismatch=regparm` to silence this error
error: aborting due to 1 previous error
```
`-Cunsafe-allow-abi-mismatch=regparm,reg-struct-return` to disable list of flags.
Shorten error message for callable with wrong return type
```
error: expected `{closure@...}` to return `Ret`, but it returns `Other`
```
instead of
```
error: expected `{closure@...}` to be a closure that returns `Ret`, but it returns `Other`
```
Fix malformed error annotations in a UI test
The compiletest DSL still features a historical remnant from the time when its directives were merely prefixed with `//` instead of `//`@`` when unknown directive names weren't rejected since they could just as well be part of prose:
As an "optimization", it stops looking for directives once it stumbles upon a line which starts with either `fn` or `mod`. This allowed a malformed error annotation of the form `//`@[…]~^^^`` to go undetected & unexercised (as it's placed below `fn main() {`).
Obviously a character other than ``@`` would've mangled the error annotation, too (but it might've caught the reviewer's eye). I specifically found this file because I ran `rg '^(fn|mod)[\s\S]*?//`@'` tests/ui --multiline -trust` to check how footgun-y that "special feature" of compiletest is.
Test validity of pattern types
r? `@RalfJung`
pulled out of #136006 so we don't have to rely on libcore types excercising this code path
There's nothing to fix. `rustc_layout_scalar_valid_range_start` structs just failed their validation on their value instead of their fields' value, causing a diff where moving to pattern types adds an additional `.0` field access to the validation error
rustc_allowed_through_unstable_modules: require deprecation message
This changes the `#[rustc_allowed_through_unstable_modules]` attribute so that a deprecation message (ideally directing people towards the stable path) is required.
Highlight clarifying information in "expected/found" error
When the expected and found types have the same textual representation, we add clarifying in parentheses. We now visually highlight it in the output.
Detect a corner case where the clarifying information would be the same for both types and skip it, as it doesn't add anything useful.

diagnostics: fix borrowck suggestions for if/while let conditionals
This code detects the case where one of the borrows is inside the let init expr while the other end is not. If that happens, we don't want to suggest adding a semicolon, because it won't work.
Fixes#133941
Tweak fn pointer suggestion span
Use a more targeted span when suggesting casting an `fn` item to an `fn` pointer.
```
error[E0308]: cannot coerce functions which must be inlined to function pointers
--> $DIR/cast.rs:10:33
|
LL | let _: fn(isize) -> usize = callee;
| ------------------ ^^^^^^ cannot coerce functions which must be inlined to function pointers
| |
| expected due to this
|
= note: expected fn pointer `fn(_) -> _`
found fn item `fn(_) -> _ {callee}`
= note: fn items are distinct from fn pointers
help: consider casting to a fn pointer
|
LL | let _: fn(isize) -> usize = callee as fn(isize) -> usize;
| +++++++++++++++++++++
```
```
error[E0308]: mismatched types
--> $DIR/fn-pointer-mismatch.rs:42:30
|
LL | let d: &fn(u32) -> u32 = foo;
| --------------- ^^^ expected `&fn(u32) -> u32`, found fn item
| |
| expected due to this
|
= note: expected reference `&fn(_) -> _`
found fn item `fn(_) -> _ {foo}`
help: consider using a reference
|
LL | let d: &fn(u32) -> u32 = &foo;
| +
```
Previously we'd point at the whole expression for replacement, instead of marking what was being added.
We could also modify the suggestions for `&(name as fn())`, but for that we require storing more accurate spans than we have now.
Rework "long type names" printing logic
Make it so more type-system types can be printed in a shortened version (like `Predicate`s).
Centralize printing the information about the "full type name path".
Make the "long type path" for the file where long types are written part of `Diag`, so that it becomes easier to keep track of it, and ensure it will always will be printed out last in the diagnostic by making its addition to the output implicit.
Tweak the shortening of types in "expected/found" labels.
Remove dead file `note.rs`.
When the expected and found types have the same textual representation, we add clarifying in parentheses. We now visually highlight it in the output.
Detect a corner case where the clarifying information would be the same for both types and skip it, as it doesn't add anything useful.
```
error: expected `{closure@...}` to return `Ret`, but it returns `Other`
```
instead of
```
error: expected `{closure@...}` to be a closure that returns `Ret`, but it returns `Other`
```
Use a more targeted span when suggesting casting an `fn` item to an `fn` pointer.
```
error[E0308]: cannot coerce functions which must be inlined to function pointers
--> $DIR/cast.rs:10:33
|
LL | let _: fn(isize) -> usize = callee;
| ------------------ ^^^^^^ cannot coerce functions which must be inlined to function pointers
| |
| expected due to this
|
= note: expected fn pointer `fn(_) -> _`
found fn item `fn(_) -> _ {callee}`
= note: fn items are distinct from fn pointers
help: consider casting to a fn pointer
|
LL | let _: fn(isize) -> usize = callee as fn(isize) -> usize;
| +++++++++++++++++++++
```
```
error[E0308]: mismatched types
--> $DIR/fn-pointer-mismatch.rs:42:30
|
LL | let d: &fn(u32) -> u32 = foo;
| --------------- ^^^ expected `&fn(u32) -> u32`, found fn item
| |
| expected due to this
|
= note: expected reference `&fn(_) -> _`
found fn item `fn(_) -> _ {foo}`
help: consider using a reference
|
LL | let d: &fn(u32) -> u32 = &foo;
| +
```
Previously we'd point at the whole expression for replacement, instead of marking what was being added.
We could also modify the suggestions for `&(name as fn())`, but for that we require storing more accurate spans than we have now.
This code detects the case where one of the borrows is inside the
let init expr while the other end is not. If that happens, we don't
want to suggest adding a semicolon, because it won't work.
Implement MIR lowering for unsafe binders
This is the final bit of the unsafe binders puzzle. It implements MIR, CTFE, and codegen for unsafe binders, and enforces that (for now) they are `Copy`. Later on, I'll introduce a new trait that relaxes this requirement to being "is `Copy` or `ManuallyDrop<T>`" which more closely models how we treat union fields.
Namely, wrapping unsafe binders is now `Rvalue::WrapUnsafeBinder`, which acts much like an `Rvalue::Aggregate`. Unwrapping unsafe binders are implemented as a MIR projection `ProjectionElem::UnwrapUnsafeBinder`, which acts much like `ProjectionElem::Field`.
Tracking:
- https://github.com/rust-lang/rust/issues/130516
Use proper type when applying deref adjustment in const
When applying a deref adjustment to some type `Wrap<T>` which derefs to `T`, we were checking that `T: ~const Deref`, not `Wrap<T>: ~const Deref` like we should have been.
r? project-const-traits
Fixes#136273Fixes#135210 -- I just deleted the test since the regression test is uninteresting
Manually walk into WF obligations in `BestObligation` proof tree visitor
When we encounter a `WellFormed` obligation in the `BestObligation` proof tree visitor, ignore the proof tree and call `wf::unnormalized_obligations` to derive well-formed obligations with the correct cause codes. This is to avoid having to replicate the somewhat delicate logic that `wf.rs` does to set up its obligation causes... Don't see a better way to do this.
vibes?? r? lcnr
Make it so more type-system types can be printed in a shortened version (like `Predicate`s).
Centralize printing the information about the "full type name path".
Make the "long type path" for the file where long types are written part of `Diag`, so that it becomes easier to keep track of it, and ensure it will always will be printed out last in the diagnostic by making its addition to the output implicit.
Tweak the shortening of types in "expected/found" labels.
Remove dead file `note.rs`.
Insert null checks for pointer dereferences when debug assertions are enabled
Similar to how the alignment is already checked, this adds a check
for null pointer dereferences in debug mode. It is implemented similarly
to the alignment check as a `MirPass`.
This inserts checks in the same places as the `CheckAlignment` pass and additionally
also inserts checks for `Borrows`, so code like
```rust
let ptr: *const u32 = std::ptr::null();
let val: &u32 = unsafe { &*ptr };
```
will have a check inserted on dereference. This is done because null references
are UB. The alignment check doesn't cover these places, because in `&(*ptr).field`,
the exact requirement is that the final reference must be aligned. This is something to
consider further enhancements of the alignment check.
For now this is implemented as a separate `MirPass`, to make it easy to disable
this check if necessary.
This is related to a 2025H1 project goal for better UB checks in debug
mode: https://github.com/rust-lang/rust-project-goals/pull/177.
r? `@saethlin`
Compiler: Finalize dyn compatibility renaming
Update the Reference link to use the new URL fragment from https://github.com/rust-lang/reference/pull/1666 (this change has finally hit stable). Fixes a FIXME.
Follow-up to #130826.
Part of #130852.
~~Blocking it on #133372.~~ (merged)
r? ghost
Similar to how the alignment is already checked, this adds a check
for null pointer dereferences in debug mode. It is implemented similarly
to the alignment check as a MirPass.
This is related to a 2025H1 project goal for better UB checks in debug
mode: https://github.com/rust-lang/rust-project-goals/pull/177.
Rollup of 8 pull requests
Successful merges:
- #135414 (Stabilize `const_black_box`)
- #136150 (ci: use windows 2025 for i686-mingw)
- #136258 (rustdoc: rename `issue-\d+.rs` tests to have meaningful names (part 11))
- #136270 (Remove `NamedVarMap`.)
- #136278 (add constraint graph to polonius MIR dump)
- #136287 (LLVM changed the nocapture attribute to captures(none))
- #136291 (some test suite cleanups)
- #136296 (float::min/max: mention the non-determinism around signed 0)
r? `@ghost`
`@rustbot` modify labels: rollup
normalize `*.long-type.txt` paths for compare-mode tests
When using a compare mode, the name of the test + compare-mode is embedded in some of rustc's output, like the location where a long type `bla.long-type(-some-hash)?.txt` is written to. That generally makes these tests fail under all compare-modes.
This PR fixes this by normalizing the compare-mode suffix away in the stderr output. We can also see some remnants of the long-removed `nll` compare mode being normalized away ^^.
I did this to fix some failures with `--compare-mode next-solver` (but it also fixes them with e.g. `--compare-mode polonius` of course):
- it makes 9 new tests pass with the new solver
- however, 3 tests I changed here still don't pass with the new solver (IIRC there were 2 ICEs, and some duplicate errors for the 3rd one)
(There was also one that triggered slowness in the new solver while triggering the long type failure, I'll mention this on zulip. )
When encountering unexpected closure return type, point at return type/expression
```
error[E0271]: expected `{closure@fallback-closure-wrap.rs:18:40}` to be a closure that returns `()`, but it returns `!`
--> $DIR/fallback-closure-wrap.rs:19:9
|
LL | let error = Closure::wrap(Box::new(move || {
| -------
LL | panic!("Can't connect to server.");
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ expected `()`, found `!`
|
= note: expected unit type `()`
found type `!`
= note: required for the cast from `Box<{closure@$DIR/fallback-closure-wrap.rs:18:40: 18:47}>` to `Box<dyn FnMut()>`
```
```
error[E0271]: expected `{closure@dont-ice-for-type-mismatch-in-closure-in-async.rs:6:10}` to be a closure that returns `bool`, but it returns `Option<()>`
--> $DIR/dont-ice-for-type-mismatch-in-closure-in-async.rs:6:16
|
LL | call(|| -> Option<()> {
| ---- ------^^^^^^^^^^
| | |
| | expected `bool`, found `Option<()>`
| required by a bound introduced by this call
|
= note: expected type `bool`
found enum `Option<()>`
note: required by a bound in `call`
--> $DIR/dont-ice-for-type-mismatch-in-closure-in-async.rs:3:25
|
LL | fn call(_: impl Fn() -> bool) {}
| ^^^^ required by this bound in `call`
```
```
error[E0271]: expected `{closure@f670.rs:28:13}` to be a closure that returns `Result<(), _>`, but it returns `!`
--> f670.rs:28:20
|
28 | let c = |e| -> ! {
| -------^
| |
| expected `Result<(), _>`, found `!`
...
32 | f().or_else(c);
| ------- required by a bound introduced by this call
-Ztrack-diagnostics: created at compiler/rustc_trait_selection/src/error_reporting/traits/fulfillment_errors.rs:1433:28
|
= note: expected enum `Result<(), _>`
found type `!`
note: required by a bound in `Result::<T, E>::or_else`
--> /home/gh-estebank/rust/library/core/src/result.rs:1406:39
|
1406 | pub fn or_else<F, O: FnOnce(E) -> Result<T, F>>(self, op: O) -> Result<T, F> {
| ^^^^^^^^^^^^ required by this bound in `Result::<T, E>::or_else`
```
CC #111539.
Fix deduplication mismatches in vtables leading to upcasting unsoundness
We currently have two cases where subtleties in supertraits can trigger disagreements in the vtable layout, e.g. leading to a different vtable layout being accessed at a callsite compared to what was prepared during unsizing. Namely:
### #135315
In this example, we were not normalizing supertraits when preparing vtables. In the example,
```
trait Supertrait<T> {
fn _print_numbers(&self, mem: &[usize; 100]) {
println!("{mem:?}");
}
}
impl<T> Supertrait<T> for () {}
trait Identity {
type Selff;
}
impl<Selff> Identity for Selff {
type Selff = Selff;
}
trait Middle<T>: Supertrait<()> + Supertrait<T> {
fn say_hello(&self, _: &usize) {
println!("Hello!");
}
}
impl<T> Middle<T> for () {}
trait Trait: Middle<<() as Identity>::Selff> {}
impl Trait for () {}
fn main() {
(&() as &dyn Trait as &dyn Middle<()>).say_hello(&0);
}
```
When we prepare `dyn Trait`, we see a supertrait of `Middle<<() as Identity>::Selff>`, which itself has two supertraits `Supertrait<()>` and `Supertrait<<() as Identity>::Selff>`. These two supertraits are identical, but they are not duplicated because we were using structural equality and *not* considering normalization. This leads to a vtable layout with two trait pointers.
When we upcast to `dyn Middle<()>`, those two supertraits are now the same, leading to a vtable layout with only one trait pointer. This leads to an offset error, and we call the wrong method.
### #135316
This one is a bit more interesting, and is the bulk of the changes in this PR. It's a bit similar, except it uses binder equality instead of normalization to make the compiler get confused about two vtable layouts. In the example,
```
trait Supertrait<T> {
fn _print_numbers(&self, mem: &[usize; 100]) {
println!("{mem:?}");
}
}
impl<T> Supertrait<T> for () {}
trait Trait<T, U>: Supertrait<T> + Supertrait<U> {
fn say_hello(&self, _: &usize) {
println!("Hello!");
}
}
impl<T, U> Trait<T, U> for () {}
fn main() {
(&() as &'static dyn for<'a> Trait<&'static (), &'a ()>
as &'static dyn Trait<&'static (), &'static ()>)
.say_hello(&0);
}
```
When we prepare the vtable for `dyn for<'a> Trait<&'static (), &'a ()>`, we currently consider the PolyTraitRef of the vtable as the key for a supertrait. This leads two two supertraits -- `Supertrait<&'static ()>` and `for<'a> Supertrait<&'a ()>`.
However, we can upcast[^up] without offsetting the vtable from `dyn for<'a> Trait<&'static (), &'a ()>` to `dyn Trait<&'static (), &'static ()>`. This is just instantiating the principal trait ref for a specific `'a = 'static`. However, when considering those supertraits, we now have only one distinct supertrait -- `Supertrait<&'static ()>` (which is deduplicated since there are two supertraits with the same substitutions). This leads to similar offsetting issues, leading to the wrong method being called.
[^up]: I say upcast but this is a cast that is allowed on stable, since it's not changing the vtable at all, just instantiating the binder of the principal trait ref for some lifetime.
The solution here is to recognize that a vtable isn't really meaningfully higher ranked, and to just treat a vtable as corresponding to a `TraitRef` so we can do this deduplication more faithfully. That is to say, the vtable for `dyn for<'a> Tr<'a>` and `dyn Tr<'x>` are always identical, since they both would correspond to a set of free regions on an impl... Do note that `Tr<for<'a> fn(&'a ())>` and `Tr<fn(&'static ())>` are still distinct.
----
There's a bit more that can be cleaned up. In codegen, we can stop using `PolyExistentialTraitRef` basically everywhere. We can also fix SMIR to stop storing `PolyExistentialTraitRef` in its vtable allocations.
As for testing, it's difficult to actually turn this into something that can be tested with `rustc_dump_vtable`, since having multiple supertraits that are identical is a recipe for ambiguity errors. Maybe someone else is more creative with getting that attr to work, since the tests I added being run-pass tests is a bit unsatisfying. Miri also doesn't help here, since it doesn't really generate vtables that are offset by an index in the same way as codegen.
r? `@lcnr` for the vibe check? Or reassign, idk. Maybe let's talk about whether this makes sense.
<sup>(I guess an alternative would also be to not do any deduplication of vtable supertraits (or only a really conservative subset) rather than trying to normalize and deduplicate more faithfully here. Not sure if that works and is sufficient tho.)</sup>
cc `@steffahn` -- ty for the minimizations
cc `@WaffleLapkin` -- since you're overseeing the feature stabilization :3
Fixes#135315Fixes#135316
Introduce a wrapper for "typed valtrees" and properly check the type before extracting the value
This PR adds a new wrapper type `ty::Value` to replace the tuple `(Ty, ty::ValTree)` and become the new canonical representation of type-level constant values.
The value extraction methods `try_to_bits`/`try_to_bool`/`try_to_target_usize` are moved to this new type. For `try_to_bits` in particular, this avoids some redundant matches on `ty::ConstKind::Value`. Furthermore, these methods and will now properly check the type before extracting the value, which fixes some ICEs.
The name `ty::Value` was chosen to be consistent with `ty::Expr`.
Commit 1 should be non-functional and commit 2 adds the type check.
---
fixes https://github.com/rust-lang/rust/issues/131102
supercedes https://github.com/rust-lang/rust/pull/136130
r? `@oli-obk`
cc `@FedericoBruzzone` `@BoxyUwU`
tests: Skip const OOM tests on aarch64-unknown-linux-gnu
Skip const OOM tests on AArch64 Linux through explicit annotations instead of inside opt-dist.
Intended to avoid confusion in cases like #135952.
Prerequisite for https://github.com/rust-lang/rust/pull/135960.
r? `@Kobzol`
cc `@workingjubilee`
try-job: dist-aarch64-linux