Currently we always do this:
```
use rustc_fluent_macro::fluent_messages;
...
fluent_messages! { "./example.ftl" }
```
But there is no need, we can just do this everywhere:
```
rustc_fluent_macro::fluent_messages! { "./example.ftl" }
```
which is shorter.
The `fluent_messages!` macro produces uses of
`crate::{D,Subd}iagnosticMessage`, which means that every crate using
the macro must have this import:
```
use rustc_errors::{DiagnosticMessage, SubdiagnosticMessage};
```
This commit changes the macro to instead use
`rustc_errors::{D,Subd}iagnosticMessage`, which avoids the need for the
imports.
Remove `HirId` from `QPath::LangItem`
Remove `HirId` from `QPath::LangItem`, since there was only *one* use-case (`ObligationCauseCode::AwaitableExpr`), which we can instead recover by walking the HIR tree.
Move EagerResolution to rustc_infer::infer::resolve
`EagerResolver` fits better in `rustc_infer::infer::resolver`.
Started to disentagle #118118 that has a lot of unrelated things.
r? `@compiler-errors` `@lcnr`
Make PlaceholderReplacer shallow_resolver and recur when infer vars
This makes resolve type and const infer vars resolve.
Given:
```rust
#![feature(inherent_associated_types)]
#![allow(incomplete_features)]
struct Foo<T>(T);
impl<'a> Foo<fn(&'a ())> {
type Assoc = &'a ();
}
fn bar(_: for<'a> fn(Foo<fn(Foo<fn(&'static ())>::Assoc)>::Assoc)) {}
fn main() {}
```
We should normalize `for<'a> fn(Foo<fn(Foo<fn(&'static ())>::Assoc)>::Assoc)` to `for<'0> fn(&'1 ())` with `'1 == '0` and `'0 == 'static` constraints. We have to resolve `'1` to `'static` in the infcx associated to `PlaceholderReplacer`.
This is part of https://github.com/rust-lang/rust/pull/118118 but unrelated to that PR.
r? `@compiler-errors` `@lcnr`
EvalCtxt::commit_if_ok don't inherit nested goals
we use it to check whether an alias is rigid, so we want to avoid considering an alias rigid simply because the inference constraints from normalizing it caused another nested goal fail
r? `@compiler-errors`
Cache flags for `ty::Const`
Not sure if this has been attempted yet, but worth a shot. It does make the code simpler in `rustc_type_ir`, since we can assume that consts have a `flags` method that is no-cost.
r? `@ghost`
Remove `PredicateKind::ClosureKind`
We don't need the `ClosureKind` predicate kind -- instead, `Fn`-family trait goals are left as ambiguous, and we only need to make progress on `FnOnce` projection goals for inference purposes.
This is similar to how we do confirmation of `Fn`-family trait and projection goals in the new trait solver, which also doesn't use the `ClosureKind` predicate.
Some hacky logic is added in the second commit so that we can keep the error messages the same.
Make regionck care about placeholders in outlives components
Currently, we don't consider a placeholder type `!T` to be a type component when it comes to processing type-outlives obligations. This means that they are essentially treated like unit values with no sub-components, and always outlive any region. This is problematic for `non_lifetime_binders`, and even more problematic for `with_negative_coherence`, since negative coherence uses placeholders as universals.
This PR adds `Component::Placeholder` which acts much like `Component::Param`. This currently causes a regression in some non-lifetime-binders tests because `for<T> T: 'static` doesn't imply itself when processing outlives obligations, so code like this will fail:
```
fn foo() where for<T> T: 'static {
foo() //~ fails
}
```
Since the where clause doesn't imply itself. This requires making the `MatchAgainstHigherRankedOutlives` relation smarter when it comes to binders.
r? types
Ignore but do not assume region obligations from unifying headers in negative coherence
Partly addresses a FIXME that was added in #112875. Just as we can throw away the nested trait/projection obligations from unifying two impl headers, we can also just throw away the region obligations too.
I removed part of the FIXME that was incorrect, namely:
> Given that the only region constraints we get are involving inference regions in the root, it shouldn't matter, but still sus.
This is not true when unifying `fn(A)` and `for<'b> fn(&'b B)` which ends up with placeholder region outlives from non-root universes. I'm pretty sure this is okay, though it would be nice if we were to use them as assumptions. See the `explicit` revision of the test I committed, which still fails.
Fixes#117986
r? lcnr, feel free to reassign tho.
Add some additional warnings for duplicated diagnostic items
This commit adds warnings if a user supplies several diagnostic options where we can only apply one of them. We explicitly warn about ignored options here. In addition a small test for these warnings is added.
r? `@compiler-errors`
For now that's the last PR to improve the warnings generated by misused `#[diagnostic::on_unimplemented]` attributes. I'm not sure what needs to be done next to move this closer to stabilization.
ignore implied bounds with placeholders
given the following code:
```rust
trait Trait {
type Ty<'a> where Self: 'a;
}
impl<T> Trait for T {
type Ty<'a> = () where Self: 'a;
}
struct Foo<T: Trait>(T)
where
for<'x> T::Ty<'x>: Sized;
```
when computing the implied bounds from `Foo<X>` we incorrectly get the bound `X: !x` from the normalization of ` for<'x> <X as Trait>::Ty::<'x>: Sized`. This is a a known bug! we shouldn't use the constraints that arise from normalization as implied bounds. See #109628.
Ignore these bounds for now. This should prevent later ICEs.
Fixes#112250Fixes#107409
new solver normalization improvements
cool beans
At the core of this PR is a `try_normalize_ty` which stops for rigid aliases by using `commit_if_ok`.
Reworks alias-relate to fully normalize both the lhs and rhs and then equate the resulting rigid (or inference) types. This fixes https://github.com/rust-lang/trait-system-refactor-initiative/issues/68 by avoiding the exponential blowup. Also supersedes #116369 by only defining opaque types if the hidden type is rigid.
I removed the stability check in `EvalCtxt::evaluate_goal` due to https://github.com/rust-lang/trait-system-refactor-initiative/issues/75. While I personally have opinions on how to fix it, that still requires further t-types/`@nikomatsakis` buy-in, so I removed that for now. Once we've decided on our approach there, we can revert this commit.
r? `@compiler-errors`
This commit adds warnings if a user supplies several diagnostic options
where we can only apply one of them. We explicitly warn about ignored
options here. In addition a small test for these warnings is added.
Fix depth check in ProofTreeVisitor.
The hack to cutoff overflows and cycles in the new trait solver was incorrect. We want to inspect everything with depth [0..10].
This fix exposed a previously unseen bug, which caused the compiler to ICE when invoking `trait_ref` on a non-assoc type projection. I simply added the guard in the `AmbiguityCausesVisitor`, and updated the expected output for the `auto-trait-coherence` test which now includes the extra note:
```text
|
= note: upstream crates may add a new impl of trait `std::marker::Send` for type `OpaqueType` in future versions
```
r? `@lcnr`
Rollup of 4 pull requests
Successful merges:
- #114224 (rustc_llvm: Link to libkstat on Solaris/SPARC)
- #117695 (Reorder checks to make sure potential missing expect on Option/Result…)
- #117870 (`fn args_ref_X` to `fn args_X`)
- #117879 (tests: update check for inferred nneg on zext)
r? `@ghost`
`@rustbot` modify labels: rollup
generator layout: ignore fake borrows
fixes#117059
We emit fake shallow borrows in case the scrutinee place uses a `Deref` and there is a match guard. This is necessary to prevent the match guard from mutating the scrutinee: fab1054e17/compiler/rustc_mir_build/src/build/matches/mod.rs (L1250-L1265)
These fake borrows end up impacting the generator witness computation in `mir_generator_witnesses`, which causes the issue in #117059. This PR now completely ignores fake borrows during this computation. This is sound as thse are always removed after analysis and the actual computation of the generator layout happens afterwards.
Only the second commit impacts behavior, and could be backported by itself.
r? types
Extend builtin/auto trait args with error when they have >1 argument
Reuse `extend_with_error` to add error args to any auto trait (or built-in trait like `Copy` that is defined incorrectly) that has additional non-`Self` args.
Fixes#117628
Pretty print `Fn` traits in `rustc_on_unimplemented`
I don't think that users really ever should need to think about `Fn*` traits' tupled args for a simple trait error.
r? diagnostics
use global cache when computing proof trees
we're writing the solver while relying on the existence of the global cache to avoid exponential blowup. By disabling the global cache when building proof trees, it is easy to get hangs, e.g. when computing intercrate ambiguity causes.
Removes the unstable `-Zdump_solver_proof_tree_use_cache` option, as we now always return a full proof tree.
r? `@compiler-errors`
Most notably, this commit changes the `pub use crate::*;` in that file
to `use crate::*;`. This requires a lot of `use` items in other crates
to be adjusted, because everything defined within `rustc_span::*` was
also available via `rustc_span::source_map::*`, which is bizarre.
The commit also removes `SourceMap::span_to_relative_line_string`, which
is unused.
Detect object safety errors when assoc type is missing
When an associated type with GATs isn't specified in a `dyn Trait`, emit an object safety error instead of only complaining about the missing associated type, as it will lead the user down a path of three different errors before letting them know that what they were trying to do is impossible to begin with.
Fix#103155.
When an associated type with GATs isn't specified in a `dyn Trait`, emit
an object safety error instead of only complaining about the missing
associated type, as it will lead the user down a path of three different
errors before letting them know that what they were trying to do is
impossible to begin with.
Fix#103155.
Allows `#[diagnostic::on_unimplemented]` attributes to have multiple
notes
This commit extends the `#[diagnostic::on_unimplemented]` (and `#[rustc_on_unimplemented]`) attributes to allow multiple `note` options. This enables emitting multiple notes for custom error messages. For now I've opted to not change any of the existing usages of `#[rustc_on_unimplemented]` and just updated the relevant compile tests.
r? `@compiler-errors`
I'm happy to adjust any of the existing changed location to emit the old error message if that's desired.
Implement `gen` blocks in the 2024 edition
Coroutines tracking issue https://github.com/rust-lang/rust/issues/43122
`gen` block tracking issue https://github.com/rust-lang/rust/issues/117078
This PR implements `gen` blocks that implement `Iterator`. Most of the logic with `async` blocks is shared, and thus I renamed various types that were referring to `async` specifically.
An example usage of `gen` blocks is
```rust
fn foo() -> impl Iterator<Item = i32> {
gen {
yield 42;
for i in 5..18 {
if i.is_even() { continue }
yield i * 2;
}
}
}
```
The limitations (to be resolved) of the implementation are listed in the tracking issue
When encountering sealed traits, point types that implement it
```
error[E0277]: the trait bound `S: d::Hidden` is not satisfied
--> $DIR/sealed-trait-local.rs:53:20
|
LL | impl c::Sealed for S {}
| ^ the trait `d::Hidden` is not implemented for `S`
|
note: required by a bound in `c::Sealed`
--> $DIR/sealed-trait-local.rs:17:23
|
LL | pub trait Sealed: self::d::Hidden {
| ^^^^^^^^^^^^^^^ required by this bound in `Sealed`
= note: `Sealed` is a "sealed trait", because to implement it you also need to implement `c::d::Hidden`, which is not accessible; this is usually done to force you to use one of the provided types that already implement it
= help: the following types implement the trait:
- c::X
- c::Y
```
The last `help` is new.