Make sure to instantiate placeholders correctly in old solver
When creating the query substitution guess for an input placeholder type like `!1_T` (in universe 1), we were guessing the response substitution with something like `!0_T`. This failed to unify with `!1_T`, causing an ICE.
This PR reworks the query substitution guess code to work a bit more like the new solver. I'm *pretty* sure this is correct, though I'd really appreciate some scrutiny from someone (*cough* lcnr) who knows a bit more about query instantiation :)
Fixes#119941
r? lcnr
`OutputTypeParameterMismatch` -> `SignatureMismatch`
I'm probably missing something that made this rename more complicated. What did you end up getting stuck on when renaming this selection error, `@lcnr?`
**also** I renamed the `FulfillmentErrorCode` variants. This is just churn but I wanted to do it forever. I can move it out of this PR if desired.
r? lcnr
Silence some follow-up errors [3/x]
this is one piece of the requested cleanups from https://github.com/rust-lang/rust/pull/117449
Keep error types around, even in obligations.
These help silence follow-up errors, as we now figure out that some types (most notably inference variables) are equal to an error type.
But it also allows figuring out more types in the presence of errors, possibly causing more errors.
In #119606 I added them and used a `_mv` suffix, but that wasn't great.
A `with_` prefix has three different existing uses.
- Constructors, e.g. `Vec::with_capacity`.
- Wrappers that provide an environment to execute some code, e.g.
`with_session_globals`.
- Consuming chaining methods, e.g. `Span::with_{lo,hi,ctxt}`.
The third case is exactly what we want, so this commit changes
`DiagnosticBuilder::foo_mv` to `DiagnosticBuilder::with_foo`.
Thanks to @compiler-errors for the suggestion.
We have `span_delayed_bug` and often pass it a `DUMMY_SP`. This commit
adds `delayed_bug`, which matches pairs like `err`/`span_err` and
`warn`/`span_warn`.
Because it takes an error code after the span. This avoids the confusing
overlap with the `DiagCtxt::struct_span_err` method, which doesn't take
an error code.
unify query canonicalization mode
Exclude from canonicalization only the static lifetimes that appear in the param env because of #118965 . Any other occurrence can be canonicalized safely AFAICT.
r? `@lcnr`
The existing uses are replaced in one of three ways.
- In a function that also has calls to `emit`, just rearrange the code
so that exactly one of `delay_as_bug` or `emit` is called on every
path.
- In a function returning a `DiagnosticBuilder`, use
`downgrade_to_delayed_bug`. That's good enough because it will get
emitted later anyway.
- In `unclosed_delim_err`, one set of errors is being replaced with
another set, so just cancel the original errors.
This works for most of its call sites. This is nice, because `emit` very
much makes sense as a consuming operation -- indeed,
`DiagnosticBuilderState` exists to ensure no diagnostic is emitted
twice, but it uses runtime checks.
For the small number of call sites where a consuming emit doesn't work,
the commit adds `DiagnosticBuilder::emit_without_consuming`. (This will
be removed in subsequent commits.)
Likewise, `emit_unless` becomes consuming. And `delay_as_bug` becomes
consuming, while `delay_as_bug_without_consuming` is added (which will
also be removed in subsequent commits.)
All this requires significant changes to `DiagnosticBuilder`'s chaining
methods. Currently `DiagnosticBuilder` method chaining uses a
non-consuming `&mut self -> &mut Self` style, which allows chaining to
be used when the chain ends in `emit()`, like so:
```
struct_err(msg).span(span).emit();
```
But it doesn't work when producing a `DiagnosticBuilder` value,
requiring this:
```
let mut err = self.struct_err(msg);
err.span(span);
err
```
This style of chaining won't work with consuming `emit` though. For
that, we need to use to a `self -> Self` style. That also would allow
`DiagnosticBuilder` production to be chained, e.g.:
```
self.struct_err(msg).span(span)
```
However, removing the `&mut self -> &mut Self` style would require that
individual modifications of a `DiagnosticBuilder` go from this:
```
err.span(span);
```
to this:
```
err = err.span(span);
```
There are *many* such places. I have a high tolerance for tedious
refactorings, but even I gave up after a long time trying to convert
them all.
Instead, this commit has it both ways: the existing `&mut self -> Self`
chaining methods are kept, and new `self -> Self` chaining methods are
added, all of which have a `_mv` suffix (short for "move"). Changes to
the existing `forward!` macro lets this happen with very little
additional boilerplate code. I chose to add the suffix to the new
chaining methods rather than the existing ones, because the number of
changes required is much smaller that way.
This doubled chainging is a bit clumsy, but I think it is worthwhile
because it allows a *lot* of good things to subsequently happen. In this
commit, there are many `mut` qualifiers removed in places where
diagnostics are emitted without being modified. In subsequent commits:
- chaining can be used more, making the code more concise;
- more use of chaining also permits the removal of redundant diagnostic
APIs like `struct_err_with_code`, which can be replaced easily with
`struct_err` + `code_mv`;
- `emit_without_diagnostic` can be removed, which simplifies a lot of
machinery, removing the need for `DiagnosticBuilderState`.
Use `resolutions(()).effective_visiblities` to avoid cycle errors in `report_object_error`
Inside of `report_object_error`, using the `effective_visibilities` query causes cycles since it calls `type_of`, which itself may call `typeck`, which may end up reporting its own object-safety errors.
Fixes#119346Fixes#119502
Tweak suggestions for bare trait used as a type
```
error[E0782]: trait objects must include the `dyn` keyword
--> $DIR/not-on-bare-trait-2021.rs:11:11
|
LL | fn bar(x: Foo) -> Foo {
| ^^^
|
help: use a generic type parameter, constrained by the trait `Foo`
|
LL | fn bar<T: Foo>(x: T) -> Foo {
| ++++++++ ~
help: you can also use `impl Foo`, but users won't be able to specify the type paramer when calling the `fn`, having to rely exclusively on type inference
|
LL | fn bar(x: impl Foo) -> Foo {
| ++++
help: alternatively, use a trait object to accept any type that implements `Foo`, accessing its methods at runtime using dynamic dispatch
|
LL | fn bar(x: &dyn Foo) -> Foo {
| ++++
error[E0782]: trait objects must include the `dyn` keyword
--> $DIR/not-on-bare-trait-2021.rs:11:19
|
LL | fn bar(x: Foo) -> Foo {
| ^^^
|
help: use `impl Foo` to return an opaque type, as long as you return a single underlying type
|
LL | fn bar(x: Foo) -> impl Foo {
| ++++
help: alternatively, you can return an owned trait object
|
LL | fn bar(x: Foo) -> Box<dyn Foo> {
| +++++++ +
```
Fix#119525:
```
error[E0038]: the trait `Ord` cannot be made into an object
--> $DIR/bare-trait-dont-suggest-dyn.rs:3:33
|
LL | fn ord_prefer_dot(s: String) -> Ord {
| ^^^ `Ord` cannot be made into an object
|
note: for a trait to be "object safe" it needs to allow building a vtable to allow the call to be resolvable dynamically; for more information visit <https://doc.rust-lang.org/reference/items/traits.html#object-safety>
--> $SRC_DIR/core/src/cmp.rs:LL:COL
|
= note: the trait cannot be made into an object because it uses `Self` as a type parameter
::: $SRC_DIR/core/src/cmp.rs:LL:COL
|
= note: the trait cannot be made into an object because it uses `Self` as a type parameter
help: consider using an opaque type instead
|
LL | fn ord_prefer_dot(s: String) -> impl Ord {
| ++++
```
`Diagnostic` has 40 methods that return `&mut Self` and could be
considered setters. Four of them have a `set_` prefix. This doesn't seem
necessary for a type that implements the builder pattern. This commit
removes the `set_` prefixes on those four methods.
Implement constant propagation on top of MIR SSA analysis
This implements the idea I proposed in https://github.com/rust-lang/rust/pull/110719#issuecomment-1718324700
Based on https://github.com/rust-lang/rust/pull/109597
The value numbering "GVN" pass formulates each rvalue that appears in MIR with an abstract form (the `Value` enum), and assigns an integer `VnIndex` to each. This abstract form can be used to deduplicate values, reusing an earlier local that holds the same value instead of recomputing. This part is proposed in #109597.
From this abstract representation, we can perform more involved simplifications, for example in https://github.com/rust-lang/rust/pull/111344.
With the abstract representation `Value`, we can also attempt to evaluate each to a constant using the interpreter. This builds a `VnIndex -> OpTy` map. From this map, we can opportunistically replace an operand or a rvalue with a constant if their value has an associated `OpTy`.
The most relevant commit is [Evaluated computed values to constants.](2767c4912e)"
r? `@oli-obk`
rework `-Zverbose`
implements the changes described in https://github.com/rust-lang/compiler-team/issues/706
the first commit is only a name change from `-Zverbose` to `-Zverbose-internals` and does not change behavior. the second commit changes diagnostics.
possible follow up work:
- `ty::pretty` could print more info with `--verbose` than it does currently. `-Z verbose-internals` shows too much info in a way that's not helpful to users. michael had ideas about this i didn't fully understand: https://rust-lang.zulipchat.com/#narrow/stream/233931-t-compiler.2Fmajor-changes/topic/uplift.20some.20-Zverbose.20calls.20and.20rename.20to.E2.80.A6.20compiler-team.23706/near/408984200
- `--verbose` should imply `-Z write-long-types-to-disk=no`. the code in `ty_string_with_limit` should take `--verbose` into account (apparently this affects `Ty::sort_string`, i'm not familiar with this code). writing a file to disk should suggest passing `--verbose`.
r? `@compiler-errors` cc `@estebank`
`IntoDiagnostic` defaults to `ErrorGuaranteed`, because errors are the
most common diagnostic level. It makes sense to do likewise for the
closely-related (and much more widely used) `DiagnosticBuilder` type,
letting us write `DiagnosticBuilder<'a, ErrorGuaranteed>` as just
`DiagnosticBuilder<'a>`. This cuts over 200 lines of code due to many
multi-line things becoming single line things.
subtype_predicate: remove unnecessary probe
There is no reason to probe here. The failure either results in an actual type error, in which cases the probe is useless, or it is used inside of evaluate, in which case we're already inside of the `fn evaluation_probe`, so it is also not necessary.
Yeet unnecessary param envs
We don't need to pass in param-envs around in the lexical region resolution code (or in `MatchAgainstFreshVars` in the solver), since it is only used to eval some consts in `structurally_relate_tys` which I removed.
This is in preparation for normalizing the outlives clauses in `ParamEnv` for the new trait solver.
r? lcnr
This commit replaces this pattern:
```
err.into_diagnostic(dcx)
```
with this pattern:
```
dcx.create_err(err)
```
in a lot of places.
It's a little shorter, makes the error level explicit, avoids some
`IntoDiagnostic` imports, and is a necessary prerequisite for the next
commit which will add a `level` arg to `into_diagnostic`.
This requires adding `track_caller` on `create_err` to avoid mucking up
the output of `tests/ui/track-diagnostics/track4.rs`. It probably should
have been there already.
Collect lang items from AST, get rid of `GenericBound::LangItemTrait`
r? `@cjgillot`
cc #115178
Looking forward, the work to remove `QPath::LangItem` will also be significantly more difficult, but I plan on doing it as well. Specifically, we have to change:
1. A lot of `rustc_ast_lowering` for things like expr `..`
2. A lot of astconv, since we actually instantiate lang and non-lang paths quite differently.
3. A ton of diagnostics and clippy lints that are special-cased via `QPath::LangItem`
Meanwhile, it was pretty easy to remove `GenericBound::LangItemTrait`, so I just did that here.