The new condition is equivalent in practice, but it's much more obvious
that it would result in an empty range, because the condition lines up
with the contents of the iterator.
Update `f16`/`f128` FIXMEs that needed `(NEG_)INFINITY`
Just a small fix to the pattern matching tests now that we can. Also contains a small unrelated comment tweak.
More trait error reworking
More work on #127492, specifically those sub-bullets under "Move trait error reporting to `error_reporting::traits`". Stacked on top of #127493.
This does introduce new `TypeErrCtxt.*Ext` traits, but those will be deleted soon. Splitting this work into bite-sized pieces is the only way that it's gonna be feasible to both author and review ❤️
r? lcnr
Automatically taint when reporting errors from ItemCtxt
This isn't very robust yet, as you need to use `itemctxt.dcx()` instead of `tcx.dcx()` for it to take effect, but it's at least more convenient than sprinkling `set_tainted_by_errors` calls in individual places.
based on https://github.com/rust-lang/rust/pull/127357
r? `@fmease`
[Coverage][MCDC] Group mcdc tests and fix panic when generating mcdc code for inlined expressions.
### Changes
1. Group all mcdc tests to one directory.
2. Since mcdc instruments different mappings for boolean expressions with normal branch coverage as #125766 introduces, it would be better also trace branch coverage results in mcdc tests.
3. So far rustc does not call `CoverageInfoBuilderMethods::init_coverage` for inlined functions. As a result, it could panic if it tries to instrument mcdc statements for inlined functions due to uninitialized cond bitmaps. We can reproduce this issue by current nightly rustc and [the test](https://github.com/rust-lang/rust/pull/127234/files#diff-c81af6bf4869aa42f5c7334e3e86344475de362f673f54ce439ec75fcb5ac3e5) with flag `--release`. This patch fixes it.
This is adding a migration lint for the current (in the 2021 edition and previous)
to move expr to expr_2021 from expr
Co-Developed-by: Eric Holk
Signed-off-by: Vincenzo Palazzo <vincenzopalazzodev@gmail.com>
Fix regression in the MIR lowering of or-patterns
In https://github.com/rust-lang/rust/pull/126553 I made a silly indexing mistake and regressed the MIR lowering of or-patterns. This fixes it.
r? `@compiler-errors` because I'd like this to be merged quickly 🙏
Consolidate region error reporting in `rustc_infer`
More work on https://github.com/rust-lang/rust/issues/127492. Separate but important step, since I'm gonna likely pull everything else here into another module.
I don't think I'm confident whether `nice_region_error` should be a submodule of the new `rustc_infer::infer::error_reporting::region` module, so I left it alone for now.
r? lcnr
Move trait selection error reporting to its own top-level module
This effectively moves `rustc_trait_selection::traits::error_reporting` to `rustc_trait_selection::error_reporting::traits`. There are only a couple of actual changes to the code, like moving the `pretty_impl_header` fn out of the specialization module for privacy reasons.
This is quite pointless on its own, but having `error_reporting` as a top-level module in `rustc_trait_selection` is very important to make sure we have a meaningful file structure for when we move **type** error reporting (and region error reporting, with which it's incredibly entangled currently) into `rustc_trait_selection`. I've opened a tracking issue here: #127492
r? lcnr
Add Natvis visualiser and debuginfo tests for `f16`
To render `f16`s in debuggers on MSVC targets, this PR changes the compiler to output `f16`s as `struct f16 { bits: u16 }`, and includes a Natvis visualiser that manually converts the `f16`'s bits to a `float` which is can then be displayed by debuggers. `gdb`, `lldb` and `cdb` tests are also included for `f16` .
`f16`/`f128` MSVC debug info issue: #121837
Tracking issue: #116909
Infer async closure signature from (old-style) two-part `Fn` + `Future` bounds
When an async closure is passed to a function that has a "two-part" `Fn` and `Future` trait bound, like:
```rust
use std::future::Future;
fn not_exactly_an_async_closure(_f: F)
where
F: FnOnce(String) -> Fut,
Fut: Future<Output = ()>,
{}
```
The we want to be able to extract the signature to guide inference in the async closure, like:
```rust
not_exactly_an_async_closure(async |string| {
for x in string.split('\n') { ... }
//~^ We need to know that the type of `string` is `String` to call methods on it.
})
```
Closure signature inference will see two bounds: `<?F as FnOnce<Args>>::Output = ?Fut`, `<?Fut as Future>::Output = String`. We need to extract the signature by looking through both projections.
### Why?
I expect the ecosystem's move onto `async Fn` trait bounds (which are not affected by this PR, and already do signature inference fine) to be slow. In the mean time, I don't see major overhead to supporting this "old–style" of trait bounds that were used to model async closures.
r? oli-obk
Fixes#127468Fixes#127425
Make casts of pointers to trait objects stricter
This is an attempt to `fix` https://github.com/rust-lang/rust/issues/120222 and https://github.com/rust-lang/rust/issues/120217.
This is done by adding restrictions on casting pointers to trait objects.
Before this PR the rules were as follows:
> When casting `*const X<dyn A>` -> `*const Y<dyn B>`, principal traits in `A` and `B` must refer to the same trait definition (or no trait).
With this PR the rules are changed to
> When casting `*const X<dyn Src>` -> `*const Y<dyn Dst>`
> - if `Dst` has a principal trait `DstP`,
> - `Src` must have a principal trait `SrcP`
> - `dyn SrcP` and `dyn DstP` must be the same type (modulo the trait object lifetime, `dyn T+'a` -> `dyn T+'b` is allowed)
> - Auto traits in `Dst` must be a subset of auto traits in `Src`
> - Not adhering to this is currently a FCW (warn-by-default + `FutureReleaseErrorReportInDeps`), instead of an error
> - if `Src` has a principal trait `Dst` must as well
> - this restriction will be removed in a follow up PR
This ensures that
1. Principal trait's generic arguments match (no `*const dyn Tr<A>` -> `*const dyn Tr<B>` casts, which are a problem for [#120222](https://github.com/rust-lang/rust/issues/120222))
2. Principal trait's lifetime arguments match (no `*const dyn Tr<'a>` -> `*const dyn Tr<'b>` casts, which are a problem for [#120217](https://github.com/rust-lang/rust/issues/120217))
3. No auto traits can be _added_ (this is a problem for arbitrary self types, see [this comment](https://github.com/rust-lang/rust/pull/120248#discussion_r1463835350))
Some notes:
- We only care about the metadata/last field, so you can still cast `*const dyn T` to `*const WithHeader<dyn T>`, etc
- The lifetime of the trait object itself (`dyn A + 'lt`) is not checked, so you can still cast `*mut FnOnce() + '_` to `*mut FnOnce() + 'static`, etc
- This feels fishy, but I couldn't come up with a reason it must be checked
The diagnostics are currently not great, to say the least, but as far as I can tell this correctly fixes the issues.
cc `@oli-obk` `@compiler-errors` `@lcnr`
coverage: Extract hole spans from HIR instead of MIR
This makes it possible to treat more kinds of nested item/code as holes, instead of being restricted to closures.
(It also potentially opens up the possibility of using HIR holes to modify branch or MC/DC spans, though we currently don't actually do this.)
Thus, this new implementation treats the following as holes:
- Closures (as before, including `async` and coroutines)
- All nested items
- Inline `const` (because why not)
This gives more accurate coverage reports, because lines occupied by holes don't show the execution count from the enclosing function.
Fixes#126626.
Make `push_outlives_components` into a `TypeVisitor`
This involves removing the `visited: &mut SsoHashSet<GenericArg<'tcx>>` that is being passed around the `VerifyBoundCx`. The fact that we were using it when decomposing different type tests seems sketchy, so I don't think, though it may technically result in us registering more redundant outlives components 🤷
I did end up deleting some of the comments that referred back to RFC 1214 during this refactor. I can add them back if you think they were useful.
r? lcnr
There's a comment saying we don't do it for performance reasons, but it
doesn't actually affect performance.
The commit also tweaks the control flow, to make clearer that two code
paths are mutually exclusive.
Rollup of 10 pull requests
Successful merges:
- #126841 ([`macro_metavar_expr_concat`] Add support for literals)
- #126881 (Make `NEVER_TYPE_FALLBACK_FLOWING_INTO_UNSAFE` a deny-by-default lint in edition 2024)
- #126921 (Give VaList its own home)
- #127367 (Run alloc sync tests)
- #127431 (Use field ident spans directly instead of the full field span in diagnostics on local fields)
- #127437 (Uplift trait ref is knowable into `rustc_next_trait_solver`)
- #127439 (Uplift elaboration into `rustc_type_ir`)
- #127451 (Improve `run-make/output-type-permutations` code and improve `filename_not_in_denylist` API)
- #127452 (Fix intrinsic const parameter counting with `effects`)
- #127459 (rustdoc-json: add type/trait alias tests)
r? `@ghost`
`@rustbot` modify labels: rollup
Uplift elaboration into `rustc_type_ir`
Allows us to deduplicate and consolidate elaboration (including these stupid elaboration duplicate fns i added for pretty printing like 3 years ago) so I'm pretty hyped about this change :3
r? lcnr
Use field ident spans directly instead of the full field span in diagnostics on local fields
This improves diagnostics and avoids having to store the `DefId`s of fields
Make `NEVER_TYPE_FALLBACK_FLOWING_INTO_UNSAFE` a deny-by-default lint in edition 2024
I don't actually really care about this, but ``@traviscross`` asked me to do this, because lang team briefly discussed this before.
(TC here:)
Specifically, our original FCPed plan included this step:
- Add a lint against fallback affecting a generic that is passed to an `unsafe` function.
- Perhaps make this lint `deny-by-default` or a hard error in Rust 2024.
That is, we had left as an open question strengthening this in Rust 2024, and had marked it as an open question on the tracking issue. We're nominating here to address the open question. (Closing the remaining open question helps us to fully mark this off for Rust 2024.)
r? ``@compiler-errors``
Tracking:
- https://github.com/rust-lang/rust/issues/123748
[`macro_metavar_expr_concat`] Add support for literals
Adds support for things like `${concat($variable, 123)}` or `${concat("hello", "_world")}` .
cc #124225
Support tail calls in mir via `TerminatorKind::TailCall`
This is one of the interesting bits in tail call implementation — MIR support.
This adds a new `TerminatorKind` which represents a tail call:
```rust
TailCall {
func: Operand<'tcx>,
args: Vec<Operand<'tcx>>,
fn_span: Span,
},
```
*Structurally* this is very similar to a normal `Call` but is missing a few fields:
- `destination` — tail calls don't write to destination, instead they pass caller's destination to the callee (such that eventual `return` will write to the caller of the function that used tail call)
- `target` — similarly to `destination` tail calls pass the caller's return address to the callee, so there is nothing to do
- `unwind` — I _think_ this is applicable too, although it's a bit confusing
- `call_source` — `become` forbids operators and is not created as a lowering of something else; tail calls always come from HIR (at least for now)
It might be helpful to read the interpreter implementation to understand what `TailCall` means exactly, although I've tried documenting it too.
-----
There are a few `FIXME`-questions still left, ideally we'd be able to answer them during review ':)
-----
r? `@oli-obk`
cc `@scottmcm` `@DrMeepster` `@JakobDegen`
Cache hir_owner_nodes in ParentHirIterator.
Lint level computation may traverse deep HIR trees using that iterator. This calls `hir_owner_nodes` many times for the same HIR owner, which is wasterful.
This PR caches the value to allow a more efficient iteration scheme.
r? ghost for perf
Make `can_eq` process obligations (almost) everywhere
Move `can_eq` to an extension trait on `InferCtxt` in `rustc_trait_selection`, and change it so that it processes obligations. This should strengthen it to be more accurate in some cases, but is most important for the new trait solver which delays relating aliases to `AliasRelate` goals. Without this, we always basically just return true when passing aliases to `can_eq`, which can lead to weird errors, for example #127149.
I'm not actually certain if we should *have* `can_eq` be called on the good path. In cases where we need `can_eq`, we probably should just be using a regular probe.
Fixes#127149
r? lcnr
Emit a wrap expr span_bug only if context is not tainted
Fixes#127332
The ICE occurs because of this `span_bug`: 51917e2e69/compiler/rustc_hir_typeck/src/expr_use_visitor.rs (L732-L738)
which is triggered by the fact that we're trying to use an `enum` in a `with` expression instead of a `struct`.
The issue originates in commit 814bfe9335 from PR #127202. As per the title of that commit the ICEing code should not be reachable any more, but looks like it still is.
This PR changes the code so that the `span_bug` will be emitted only if the context is not tainted by a previous error.
Currently the second element is a `Vec<(FlatToken, Spacing)>`. But the
vector always has zero or one elements, and the `FlatToken` is always
`FlatToken::AttrTarget` (which contains an `AttributesData`), and the
spacing is always `Alone`. So we can simplify it to
`Option<AttributesData>`.
An assertion in `to_attr_token_stream` can can also be removed, because
`new_tokens.len()` was always 0 or 1, which means than `range.len()`
is always greater than or equal to it, because `range.is_empty()` is
always false (as per the earlier assertion).
The only place it is meaningfully used is in a panic message in
`TokenStream::from_ast`. But `node.span()` doesn't need to be printed
because `node` is also printed and it must contain the span.
Don't try to label `ObligationCauseCode::CompareImplItem` for an RPITIT, since it has no name
The old (current) trait solver has a limitation that when a where clause in param-env must be normalized using the same where clause, then we get spurious errors in `normalize_param_env_or_error`. I don't think there's an issue tracking it, but it's the root cause for many of the "fixed-by-next-solver" labeled issues.
Specifically, these errors may occur when checking predicate entailment of the GAT that comes out of desugaring RPITITs. Since we use `ObligationCauseCode::CompareImplItem` for these predicates, we try calling `item_name` on an RPITIT which fails, since the RPITIT has no name.
We simply suppress this logic when we're reporting a predicate entailment error for an RPITIT. RPITITs should never have predicate entailment errors, *by construction*, but they may due to this bug in the old solver.
Addresses the ICE in #127331, though doesn't fix the underlying issue (which is fundamental to the old solver).
r? types
Uplift outlives components to `rustc_type_ir`
We need this to uplift `push_outlives_components`, since the elaborator uses `push_outlives_components` to elaborate type outlives obligations and I want to uplift elaboration.
This ends up reworking and inlining a fair portion of the `GenericArg::walk_shallow` function, whose only callsite was this one. I believe I got the logic correct, but may be worthwhile to look at it closely just in case. Unfortunately github was too dumb to understand that this is a rename + change -- I could also rework the git history to split the "copy the file over" part from the actual logical changes if that makes this easier to review.
r? lcnr
Elaboration tweaks
Removes `Filter::OnlySelfThatDefines` and reimplements `transitive_bounds_that_define_assoc_item` as a separate function, since I don't want to have to uplift that mode since it's both an implementation detail (only exists to avoid cycles in astconv) and requires exposing `Ident` as an associated type on `Interner`.
r? lcnr
offset_from, offset: clearly separate safety requirements the user needs to prove from corollaries that automatically follow
By landing https://github.com/rust-lang/rust/pull/116675 we decided that objects larger than `isize::MAX` cannot exist in the address space of a Rust program, which lets us simplify these rules.
For `offset_from`, we can even state that the *absolute* distance fits into an `isize`, and therefore exclude `isize::MIN`. This PR also changes Miri to treat an `isize::MIN` difference like the other isize-overflowing cases.
Match ergonomics 2024: align with RFC again
- `&` matches `&mut` on old editions
- Add some more tests
r? ``@Nadrieril``
cc https://github.com/rust-lang/rust/issues/123076
``@rustbot`` label A-edition-2024 A-patterns
Added dots at the sentence ends of rustc AST doc
Just a tiny improvement for the AST documentation by bringing consistency to sentence ends. I intentionally didn't terminate every sentence, there are still some members not having them, but at least there's no mixing style on the type level.
Use `ControlFlow` results for visitors that are only looking for a single value
These visitors all had a `Option<Value>` or `bool` field, that, once set, was never unset or modified again. They have been refactored by removing the field and returning `ControlFlow` directly from the visitor
Split `SolverDelegate` back out from `InferCtxtLike`
This is because in order to uplift things like the `Generalizer` and other `TypeRelation`s, we want to be able to interface with `InferCtxtLike` (and `InferCtxt` as its implementation), rather that `SolverDelegate`, which only really exists as a hack to be able to define some downstream methods in `rustc_type_ir`.
r? lcnr
Improve well known value check-cfg diagnostic for the standard library
This PR adjust the current logic for hidding the rustc/Cargo suggestion to add a value to a well-known name to exclude the standard library and rustc crates.
This is done in order to improve the contributor experience, in particular when adding a new target, which often requires adding some cfgs like `target_os` which may not be available yet in stage0.
<details>
The diagnostic code would look like this.
```text
error: unexpected `cfg` condition value: `blable`
--> library/core/src/lib.rs:369:7
|
369 | #[cfg(target_os = "blable")]
| ^^^^^^^^^^^^^^^^^^^^
|
= note: expected values for `target_os` are: `aix`, `android`, `cuda`, `dragonfly`, `emscripten`, `espidf`, `freebsd`, `fuchsia`, `haiku`, `hermit`, `horizon`, `hurd`, `illumos`, `ios`, `l4re`, `linux`, `macos`, `netbsd`, `none`, `nto`, `openbsd`, `psp`, `redox`, `solaris`, `solid_asp3`, `teeos`, `tvos`, `uefi`, `unknown`, `visionos`, `vita`, `vxworks`, `wasi`, `watchos`, and `windows` and 2 more
= help: consider using a Cargo feature instead
= help: or consider adding in `Cargo.toml` the `check-cfg` lint config for the lint:
[lints.rust]
unexpected_cfgs = { level = "warn", check-cfg = ['cfg(target_os, values("blable"))'] }
= help: or consider adding `println!("cargo::rustc-check-cfg=cfg(target_os, values(\"blable\"))");` to the top of the `build.rs`
= note: see <https://doc.rust-lang.org/nightly/rustc/check-cfg/cargo-specifics.html> for more information about checking conditional configuration
= note: `-D unexpected-cfgs` implied by `-D warnings`
= help: to override `-D warnings` add `#[allow(unexpected_cfgs)]`
```
</details>
Improve dead code analysis
Fixes#120770
1. check impl items later if self ty is private although the trait method is public, cause we must use the ty firstly if it's private
2. mark the adt live if it appears in pattern, like generic argument, this implies the use of the adt
3. based on the above, we can handle the case that private adts impl Default, so that we don't need adding rustc_trivial_field_reads on Default, and the logic in should_ignore_item
r? ``@pnkfelix``
coverage: Rename `mir::coverage::BranchInfo` to `CoverageInfoHi`
This opens the door to collecting and storing coverage information that is unrelated to branch coverage or MC/DC, during MIR building.
There is no change to the output of coverage instrumentation, but one deliberate change is that functions now *always* have an attached `CoverageInfoHi` (if coverage is enabled and they are eligible), even if they didn't collect any interesting branch information.
---
`@rustbot` label +A-code-coverage
DependencyList: removed outdated comment
Comment was outdated. Didn't updated description, as `Linkage` enum have descriptive names.
Also added fixme about moving this file to rustc_metadata.
Match ergonomics 2024: Implement TC's match ergonomics proposal
Under gate `ref_pat_eat_one_layer_2024_structural`. Enabling `ref_pat_eat_one_layer_2024` at the same time allows the union of what the individual gates allow. `@traviscross`
r? `@Nadrieril`
cc https://github.com/rust-lang/rust/issues/123076
`@rustbot` label A-edition-2024 A-patterns
Miri function identity hack: account for possible inlining
Having a non-lifetime generic is not the only reason a function can be duplicated. Another possibility is that the function may be eligible for cross-crate inlining. So also take into account the inlining attribute in this Miri hack for function pointer identity.
That said, `cross_crate_inlinable` will still sometimes return true even for `inline(never)` functions:
- when they are `DefKind::Ctor(..) | DefKind::Closure` -- I assume those cannot be `InlineAttr::Never` anyway?
- when `cross_crate_inline_threshold == InliningThreshold::Always`
so maybe this is still not quite the right criterion to use for function pointer identity.
cache type sizes in type-size limit visitor
This is basically https://github.com/rust-lang/rust/pull/125507#issuecomment-2206813779 as lcnr can't open the PR now.
Locally it reduces the `itertools` regression by quite a bit, to "only +50%" compared to nightly (that includes overhead from the local lack of artifact post-processing, and is just a data point to compare to the 10-20x timings without the cache).
```console
Benchmark 1: cargo +stage1 build --release
Time (mean ± σ): 2.721 s ± 0.009 s [User: 2.446 s, System: 0.325 s]
Range (min … max): 2.710 s … 2.738 s 10 runs
Benchmark 2: cargo +nightly build --release
Time (mean ± σ): 1.784 s ± 0.005 s [User: 1.540 s, System: 0.279 s]
Range (min … max): 1.778 s … 1.792 s 10 runs
Summary
cargo +nightly build --release ran
1.52 ± 0.01 times faster than cargo +stage1 build --release
```
On master, it's from 34s to the 2.7s above.
r? compiler-errors
Rollup of 9 pull requests
Successful merges:
- #123043 (Disable dead variant removal for `#[repr(C)]` enums.)
- #126405 (Migrate some rustc_builtin_macros to SessionDiagnostic)
- #127037 (Remove some duplicated tests)
- #127283 (Reject SmartPointer constructions not serving the purpose)
- #127301 (Tweak some structured suggestions to be more verbose and accurate)
- #127307 (Allow to have different types for arguments of `Rustc::remap_path_prefix`)
- #127309 (jsondocck: add `$FILE` built-in variable)
- #127314 (Trivial update on tidy bless note)
- #127319 (Remove a use of `StructuredDiag`, which is incompatible with automatic error tainting and error translations)
r? `@ghost`
`@rustbot` modify labels: rollup
Remove a use of `StructuredDiag`, which is incompatible with automatic error tainting and error translations
fixes#127219
I want to remove all of `StructuredDiag`, but it's a bit more involved as it is also used from the `ItemCtxt`, which doesn't support tainting yet.
Tweak some structured suggestions to be more verbose and accurate
Addressing some issues I found while working on #127282.
```
error: this URL is not a hyperlink
--> $DIR/auxiliary/include-str-bare-urls.md:1:11
|
LL | HEADS UP! https://example.com MUST SHOW UP IN THE STDERR FILE!
| ^^^^^^^^^^^^^^^^^^^
|
= note: bare URLs are not automatically turned into clickable links
note: the lint level is defined here
--> $DIR/include-str-bare-urls.rs:14:9
|
LL | #![deny(rustdoc::bare_urls)]
| ^^^^^^^^^^^^^^^^^^
help: use an automatic link instead
|
LL | HEADS UP! <https://example.com> MUST SHOW UP IN THE STDERR FILE!
| + +
```
```
error[E0384]: cannot assign twice to immutable variable `v`
--> $DIR/assign-imm-local-twice.rs:7:5
|
LL | v = 1;
| ----- first assignment to `v`
LL | println!("v={}", v);
LL | v = 2;
| ^^^^^ cannot assign twice to immutable variable
|
help: consider making this binding mutable
|
LL | let mut v: isize;
| +++
```
```
error[E0393]: the type parameter `Rhs` must be explicitly specified
--> $DIR/issue-22560.rs:9:23
|
LL | trait Sub<Rhs=Self> {
| ------------------- type parameter `Rhs` must be specified for this
...
LL | type Test = dyn Add + Sub;
| ^^^
|
= note: because of the default `Self` reference, type parameters must be specified on object types
help: set the type parameter to the desired type
|
LL | type Test = dyn Add + Sub<Rhs>;
| +++++
```
```
error[E0596]: cannot borrow `v` as mutable, as it is not declared as mutable
--> $DIR/issue-33819.rs:4:34
|
LL | Some(ref v) => { let a = &mut v; },
| ^^^^^^ cannot borrow as mutable
|
help: try removing `&mut` here
|
LL - Some(ref v) => { let a = &mut v; },
LL + Some(ref v) => { let a = v; },
|
```
```
help: remove the invocation before committing it to a version control system
|
LL - dbg!();
|
```
```
error[E0308]: mismatched types
--> $DIR/issue-39974.rs:1:21
|
LL | const LENGTH: f64 = 2;
| ^ expected `f64`, found integer
|
help: use a float literal
|
LL | const LENGTH: f64 = 2.0;
| ++
```
```
error[E0529]: expected an array or slice, found `Vec<i32>`
--> $DIR/match-ergonomics.rs:8:9
|
LL | [&v] => {},
| ^^^^ pattern cannot match with input type `Vec<i32>`
|
help: consider slicing here
|
LL | match x[..] {
| ++++
```
```
error[E0609]: no field `0` on type `[u32; 1]`
--> $DIR/parenthesized-deref-suggestion.rs:10:21
|
LL | (x as [u32; 1]).0;
| ^ unknown field
|
help: instead of using tuple indexing, use array indexing
|
LL | (x as [u32; 1])[0];
| ~ +
```
Reject SmartPointer constructions not serving the purpose
Tracking issue: #123430
With this PR we will reject a row of malformed `SmartPointer` implementor candidates.
cc `@Darksonn` `@davidtwco` for context.
Migrate some rustc_builtin_macros to SessionDiagnostic
<!--
If this PR is related to an unstable feature or an otherwise tracked effort,
please link to the relevant tracking issue here. If you don't know of a related
tracking issue or there are none, feel free to ignore this.
This PR will get automatically assigned to a reviewer. In case you would like
a specific user to review your work, you can assign it to them by using
r? <reviewer name>
-->
Part of https://github.com/rust-lang/rust/issues/100717.
pick up abandoned pr: #101935
`@rustbot` label +A-translation
Disable dead variant removal for `#[repr(C)]` enums.
This prevents removing dead branches from a `#[repr(C)]` enum (they now get discriminants allocated as if they were inhabited).
Implementation notes: ABI of something like
```rust
#[repr(C)]
enum Foo {
Foo(!),
}
```
is still `Uninhabited`, but its layout is now computed as if all the branches were inhabited.
This seemed to me like a proper way to do it, especially given that ABI sanity check explicitly asserts that type-level uninhabitedness implies ABI uninhabitedness.
This probably needs some sort of FCP (given that it changes `#[repr(C)]` layout, which is a stable guarantee), but I’m not sure how to call for one or which team is the most relevant.
See https://github.com/rust-lang/unsafe-code-guidelines/issues/500.
The rules for casting `*mut X<dyn A>` -> `*mut Y<dyn B>` are as follows:
- If `B` has a principal
- `A` must have exactly the same principal (including generics)
- Auto traits of `B` must be a subset of autotraits in `A`
Note that `X<_>` and `Y<_>` can be identity, or arbitrary structs with last field being the dyn type.
The lifetime of the trait object itself (`dyn ... + 'a`) is not checked.
This prevents a few soundness issues with `#![feature(arbitrary_self_types)]` and trait upcasting.
Namely, these checks make sure that vtable is always valid for the pointee.
Stop using specialization in rustc_index and rustc_borrowck
For rustc_borrowck the version with specialization isn't much more readable anyway IMO. For rustc_index it probably doesn't affect perf in any noticeable way anyway.
Optimize SipHash by reordering compress instructions
This PR optimizes hashing by changing the order of instructions in the sip.rs `compress` macro so the CPU can parallelize it better. The new order is taken directly from Fig 2.1 in [the SipHash paper](https://eprint.iacr.org/2012/351.pdf) (but with the xors moved which makes it a little faster). I attempted to optimize it some more after this, but I think this might be the optimal instruction order. Note that this shouldn't change the behavior of hashing at all, only statements that don't depend on each other were reordered.
It appears like the current order hasn't changed since its [original implementation from 2012](fada46c421 (diff-b751133c229259d7099bbbc7835324e5504b91ab1aded9464f0c48cd22e5e420R35)) which doesn't look like it was written with data dependencies in mind.
Running `./x bench library/core --stage 0 --test-args hash` before and after this change shows the following results:
Before:
```
benchmarks:
hash::sip::bench_bytes_4 7.20/iter +/- 0.70
hash::sip::bench_bytes_7 9.01/iter +/- 0.35
hash::sip::bench_bytes_8 8.12/iter +/- 0.10
hash::sip::bench_bytes_a_16 10.07/iter +/- 0.44
hash::sip::bench_bytes_b_32 13.46/iter +/- 0.71
hash::sip::bench_bytes_c_128 37.75/iter +/- 0.48
hash::sip::bench_long_str 121.18/iter +/- 3.01
hash::sip::bench_str_of_8_bytes 11.20/iter +/- 0.25
hash::sip::bench_str_over_8_bytes 11.20/iter +/- 0.26
hash::sip::bench_str_under_8_bytes 9.89/iter +/- 0.59
hash::sip::bench_u32 9.57/iter +/- 0.44
hash::sip::bench_u32_keyed 6.97/iter +/- 0.10
hash::sip::bench_u64 8.63/iter +/- 0.07
```
After:
```
benchmarks:
hash::sip::bench_bytes_4 6.64/iter +/- 0.14
hash::sip::bench_bytes_7 8.19/iter +/- 0.07
hash::sip::bench_bytes_8 8.59/iter +/- 0.68
hash::sip::bench_bytes_a_16 9.73/iter +/- 0.49
hash::sip::bench_bytes_b_32 12.70/iter +/- 0.06
hash::sip::bench_bytes_c_128 32.38/iter +/- 0.20
hash::sip::bench_long_str 102.99/iter +/- 0.82
hash::sip::bench_str_of_8_bytes 10.71/iter +/- 0.21
hash::sip::bench_str_over_8_bytes 11.73/iter +/- 0.17
hash::sip::bench_str_under_8_bytes 10.33/iter +/- 0.41
hash::sip::bench_u32 10.41/iter +/- 0.29
hash::sip::bench_u32_keyed 9.50/iter +/- 0.30
hash::sip::bench_u64 8.44/iter +/- 1.09
```
I ran this on my computer so there's some noise, but you can tell at least `bench_long_str` is significantly faster (~18%).
Also, I noticed the same compress function from the library is used in the compiler as well, so I took the liberty of copy-pasting this change to there as well.
Thanks `@semisol` for porting SipHash for another project which led me to notice this issue in Rust, and for helping investigate. <3
rustdoc: update to pulldown-cmark 0.11
r? rustdoc
This pull request updates rustdoc to the latest version of pulldown-cmark. Along with adding new markdown extensions (which this PR doesn't enable), the new pulldown-cmark version also fixes a large number of bugs. Because all text files successfully parse as markdown, these bugfixes change the output, which can break people's existing docs.
A crater run, https://github.com/rust-lang/rust/pull/121659, has already been run for this change.
The first commit upgrades and fixes rustdoc. The second commit adds a lint for the footnote and block quote parser changes, which break the largest numbers of docs in the Crater run. The strikethrough change was mitigated in pulldown-cmark itself.
Unblocks https://github.com/rust-lang/rust-clippy/pull/12876