Correct trusty targets to be tier 3
The Trusty targets were added in https://github.com/rust-lang/rust/pull/129490, but in that PR I accidentally marked them as tier 2. This PR corrects the target metadata to mark them as tier 3.
Move `'tcx` lifetime off of impl and onto methods for `CrateMetadataRef`
Unconstrained type and const variables are not allowed, but unconstrained lifetimes are. This is not very good style, though, and it leads to unnecessary captures of a lifetime in edition 2024 (not that it matters, but it does trigger the edition migration lint).
derive(SmartPointer): assume pointee from the single generic and better error messages
Fix#129465
Actually RFC says that `#[pointee]` can be inferred when there is no ambiguity, or there is only one generic type parameter so to say.
cc ```@Darksonn```
r? ```@compiler-errors```
Emit specific message for time<=0.3.35
```
error[E0282]: type annotations needed for `Box<_>`
--> /home/gh-estebank/.cargo/registry/src/index.crates.io-6f17d22bba15001f/time-0.3.34/src/format_description/parse/mod.rs:83:9
|
83 | let items = format_items
| ^^^^^
...
86 | Ok(items.into())
| ---- type must be known at this point
|
= note: this is an inference error on `time` caused by a change in Rust 1.80.0; update `time` to version `>=0.3.36`
```
Partially mitigate the fallout from https://github.com/rust-lang/rust/issues/127343. Although the biggest benefit of this would have been if we had had this in 1.80 before it became stable, the long-tail of that change will be felt for a *long* time, so better late than never.
We can also emit an even more targeted error instead of this inference failure.
Add an ability to convert between `Span` and `visit::Location`
AFAIK, there is no way to create a `Location` from a `Span` because its only field is private. This makes it impossible to use visitor methods like `visit_statement` or `visit_terminator`.
This PR adds an implementation for`From<Span>` for `Location` to fix this.
r? ```@celinval```
rustc_target: Add various aarch64 features
Add various aarch64 features already supported by LLVM and Linux.
Additionally include some comment fixes to ensure consistency of feature names with the Arm ARM.
Compiler support for features added to stdarch by https://github.com/rust-lang/stdarch/pull/1614.
Tracking issue for unstable aarch64 features is https://github.com/rust-lang/rust/issues/127764.
List of added features:
- FEAT_CSSC
- FEAT_ECV
- FEAT_FAMINMAX
- FEAT_FLAGM2
- FEAT_FP8
- FEAT_FP8DOT2
- FEAT_FP8DOT4
- FEAT_FP8FMA
- FEAT_HBC
- FEAT_LSE128
- FEAT_LSE2
- FEAT_LUT
- FEAT_MOPS
- FEAT_LRCPC3
- FEAT_SVE_B16B16
- FEAT_SVE2p1
- FEAT_WFxT
- FEAT_SME
- FEAT_SME_F16F16
- FEAT_SME_F64F64
- FEAT_SME_F8F16
- FEAT_SME_F8F32
- FEAT_SME_FA64
- FEAT_SME_I16I64
- FEAT_SME_LUTv2
- FEAT_SME2
- FEAT_SME2p1
- FEAT_SSVE_FP8DOT2
- FEAT_SSVE_FP8DOT4
- FEAT_SSVE_FP8FMA
FEAT_FPMR is added in the first commit and then removed in a separate one to highlight it being removed from upstream LLVM 19. The intention is for it to be detectable at runtime through stdarch but not have a corresponding Rust compile-time feature.
Implement a first version of RFC 3525: struct target features
This PR is an attempt at implementing https://github.com/rust-lang/rfcs/pull/3525, behind a feature gate `struct_target_features`.
There's obviously a few tasks that ought to be done before this is merged; in no particular order:
- add proper error messages
- add tests
- create a tracking issue for the RFC
- properly serialize/deserialize the new target_features field in `rmeta` (assuming I even understood that correctly :-))
That said, as I am definitely not a `rustc` expert, I'd like to get some early feedback on the overall approach before fixing those things (and perhaps some pointers for `rmeta`...), hence this early PR :-)
Here's an example piece of code that I have been using for testing - with the new code, the calls to intrinsics get correctly inlined:
```rust
#![feature(struct_target_features)]
use std::arch::x86_64::*;
/*
// fails to compile
#[target_feature(enable = "avx")]
struct Invalid(u32);
*/
#[target_feature(enable = "avx")]
struct Avx {}
#[target_feature(enable = "sse")]
struct Sse();
/*
// fails to compile
extern "C" fn bad_fun(_: Avx) {}
*/
/*
// fails to compile
#[inline(always)]
fn inline_fun(_: Avx) {}
*/
trait Simd {
fn do_something(&self);
}
impl Simd for Avx {
fn do_something(&self) {
unsafe {
println!("{:?}", _mm256_setzero_ps());
}
}
}
impl Simd for Sse {
fn do_something(&self) {
unsafe {
println!("{:?}", _mm_setzero_ps());
}
}
}
struct WithAvx {
#[allow(dead_code)]
avx: Avx,
}
impl Simd for WithAvx {
fn do_something(&self) {
unsafe {
println!("{:?}", _mm256_setzero_ps());
}
}
}
#[inline(never)]
fn dosomething<S: Simd>(simd: &S) {
simd.do_something();
}
fn main() {
/*
// fails to compile
Avx {};
*/
if is_x86_feature_detected!("avx") {
let avx = unsafe { Avx {} };
dosomething(&avx);
dosomething(&WithAvx { avx });
}
if is_x86_feature_detected!("sse") {
dosomething(&unsafe { Sse {} })
}
}
```
Tracking:
- https://github.com/rust-lang/rust/issues/129107
```
error[E0282]: type annotations needed for `Box<_>`
--> ~/.cargo/registry/src/index.crates.io-6f17d22bba15001f/time-0.3.34/src/format_description/parse/mod.rs:83:9
|
83 | let items = format_items
| ^^^^^
...
86 | Ok(items.into())
| ---- type must be known at this point
|
= note: this is an inference error on crate `time` caused by a change in Rust 1.80.0; update `time` to version `>=0.3.35`
```
Partially address #127343.
coverage: Rename `CodeRegion` to `SourceRegion`
LLVM uses the word "code" to refer to a particular kind of coverage mapping. This unrelated usage of the word is confusing, and makes it harder to introduce types whose names correspond to the LLVM classification of coverage kinds.
No functional changes.
Rename `BikeshedIntrinsicFrom` to `TransmuteFrom`
As our implementation of MCP411 nears completion and we begin to solicit testing, it's no longer reasonable to expect testers to type or remember `BikeshedIntrinsicFrom`. The name degrades the ease-of-reading of documentation, and the overall experience of using compiler safe transmute.
Tentatively, we'll instead adopt `TransmuteFrom`.
This name seems to be the one most likely to be stabilized, after discussion on Zulip [1]. We may want to revisit the ordering of `Src` and `Dst` before stabilization, at which point we'd likely consider `TransmuteInto` or `Transmute`.
[1] https://rust-lang.zulipchat.com/#narrow/stream/216762-project-safe-transmute/topic/What.20should.20.60BikeshedIntrinsicFrom.60.20be.20named.3F
Tracking Issue: https://github.com/rust-lang/rust/issues/99571
r? `@compiler-errors`
interpret: do not make const-eval query result depend on tcx.sess
The check against calling functions with missing target features uses `tcx.sess` to determine which target features are available. However, this can differ between different crates in a crate graph, so the same const-eval query can come to different conclusions about whether a constant evaluates successfully or not -- which is bad, we should consistently get the same result everywhere.
const-eval: do not make UbChecks behavior depend on current crate's flags
Fixes https://github.com/rust-lang/rust/issues/129552
Let's see if we can get away with just always enabling these checks.
add repr to the allowlist for naked functions
Fixes#129412 (combining unstable features #90957 (`#![feature(naked_functions)]`) and #82232 (`#![feature(fn_align)]`)
LLVM uses the word "code" to refer to a particular kind of coverage mapping.
This unrelated usage of the word is confusing, and makes it harder to introduce
types whose names correspond to the LLVM classification of coverage kinds.
Get rid of `predicates_defined_on`
This is the uncontroversial part of #129532. This simply inlines the `predicates_defined_on` into into `predicates_of`. Nothing should change here logically.
Stop storing a special inner body for the coroutine by-move body for async closures
...and instead, just synthesize an item which is treated mostly normally by the MIR pipeline.
This PR does a few things:
* We synthesize a new `DefId` for the by-move body of a closure, which has its `mir_built` fed with the output of the `ByMoveBody` MIR transformation, and some other relevant queries.
* This has the `DefKind::ByMoveBody`, which we use to distinguish it from "real" bodies (that come from HIR) which need to be borrowck'd. Introduce `TyCtxt::is_synthetic_mir` to skip over `mir_borrowck` which is called by `mir_promoted`; borrowck isn't really possible to make work ATM since it heavily relies being called on a body generated from HIR, and is redundant by the construction of the by-move-body.
* Remove the special `PassManager` hacks for handling the inner `by_move_body` stored within the coroutine's mir body. Instead, this body is fed like a regular MIR body, so it's goes through all of the `tcx.*_mir` stages normally (build -> promoted -> ...etc... -> optimized) ✨.
* Remove the `InstanceKind::ByMoveBody` shim, since now we have a "regular" def id, we can just use `InstanceKind::Item`. This also allows us to remove the corresponding hacks from codegen, such as in `fn_sig_for_fn_abi` ✨.
Notable remarks:
* ~~I know it's kind of weird to be using `DefKind::Closure` here, since it's not a distinct closure but just a new MIR body. I don't believe it really matters, but I could also use a different `DefKind`... maybe one that we could use for synthetic MIR bodies in general?~~ edit: We're doing this now.
make it possible to enable const_precise_live_drops per-function
This makes const_precise_live_drops work with rustc_allow_const_fn_unstable so that we can stabilize individual functions that rely on const_precise_live_drops.
The goal is that we can use that to stabilize some of https://github.com/rust-lang/rust/issues/67441 without having to stabilize const_precise_live_drops.
As our implementation of MCP411 nears completion and we begin to
solicit testing, it's no longer reasonable to expect testers to
type or remember `BikeshedIntrinsicFrom`. The name degrades the
ease-of-reading of documentation, and the overall experience of
using compiler safe transmute.
Tentatively, we'll instead adopt `TransmuteFrom`.
This name seems to be the one most likely to be stabilized, after
discussion on Zulip [1]. We may want to revisit the ordering of
`Src` and `Dst` before stabilization, at which point we'd likely
consider `TransmuteInto` or `Transmute`.
[1] https://rust-lang.zulipchat.com/#narrow/stream/216762-project-safe-transmute/topic/What.20should.20.60BikeshedIntrinsicFrom.60.20be.20named.3F
Convert to_llvm_features to return Option<LLVMFeature> so that it can
return None if the requested feature is not available for the current
LLVM version.
Add match rules to filter out aarch64 features not available in LLVM 17.
FEAT_FPMR has been removed from upstream LLVM as of LLVM 19.
Remove the feature from the target features list and temporarily hack
the LLVM codegen to always enable it until the minimum LLVM version is
bumped to 19.
Add SME aarch64 features already supported by LLVM and Linux.
This commit adds compiler support for the following features:
- FEAT_SME
- FEAT_SME_F16F16
- FEAT_SME_F64F64
- FEAT_SME_F8F16
- FEAT_SME_F8F32
- FEAT_SME_FA64
- FEAT_SME_I16I64
- FEAT_SME_LUTv2
- FEAT_SME2
- FEAT_SME2p1
- FEAT_SSVE_FP8DOT2
- FEAT_SSVE_FP8DOT4
- FEAT_SSVE_FP8FMA
Add various aarch64 features already supported by LLVM and Linux.
The features are marked as unstable using a newly added symbol, i.e.
aarch64_unstable_target_feature.
Additionally include some comment fixes to ensure consistency of
feature names with the Arm ARM and support for architecture version
target features up to v9.5a.
This commit adds compiler support for the following features:
- FEAT_CSSC
- FEAT_ECV
- FEAT_FAMINMAX
- FEAT_FLAGM2
- FEAT_FP8
- FEAT_FP8DOT2
- FEAT_FP8DOT4
- FEAT_FP8FMA
- FEAT_FPMR
- FEAT_HBC
- FEAT_LSE128
- FEAT_LSE2
- FEAT_LUT
- FEAT_MOPS
- FEAT_LRCPC3
- FEAT_SVE_B16B16
- FEAT_SVE2p1
- FEAT_WFxT
Add `f16` and `f128` inline ASM support for `aarch64`
Adds `f16` and `f128` inline ASM support for `aarch64`. SIMD vector types are taken from [the ARM intrinsics list](https://developer.arm.com/architectures/instruction-sets/intrinsics/#f:`@navigationhierarchiesreturnbasetype=[float]&f:@navigationhierarchieselementbitsize=[16]&f:@navigationhierarchiesarchitectures=[A64]).` Based on the work of `@lengrongfu` in #127043.
Relevant issue: #125398
Tracking issue: #116909
`@rustbot` label +F-f16_and_f128
try-job: aarch64-gnu
try-job: aarch64-apple
Add Trusty OS as tier 3 target
This PR adds support for the [Trusty secure operating system](https://source.android.com/docs/security/features/trusty) as a Tier 3 supported target. This upstreams [the patch that we have been using](https://cs.android.com/android/platform/superproject/+/master:external/rust/crates/libc/patches/trusty.patch;l=1;drc=122e586e93a534160230dc10ae3474cf31dd8f7f) internally. This also revives https://github.com/rust-lang/rust/pull/103895 which was closed due to inactivity, and is being resumed now that time allows.
And MCP has already been done for adding this platform: rust-lang/compiler-team/issues/568
# Target Tier Policy Acknowledgements
> A tier 3 target must have a designated developer or developers (the "target maintainers") on record to be CCed when issues arise regarding the target. (The mechanism to track and CC such developers may evolve over time.)
- Nicole LeGare (``@randomPoison)``
- Stephen Crane (``@rinon)``
- As a fallback trusty-dev-team@google.com can be contacted
> Targets must use naming consistent with any existing targets; for instance, a target for the same CPU or OS as an existing Rust target should use the same name for that CPU or OS. Targets should normally use the same names and naming conventions as used elsewhere in the broader ecosystem beyond Rust (such as in other toolchains), unless they have a very good reason to diverge. Changing the name of a target can be highly disruptive, especially once the target reaches a higher tier, so getting the name right is important even for a tier 3 target.
The two new Trusty targets, `aarch64-unknown-trusty` and `armv7-unknown-trusty` both follow the existing naming convention for similar targets.
> Target names should not introduce undue confusion or ambiguity unless absolutely necessary to maintain ecosystem compatibility. For example, if the name of the target makes people extremely likely to form incorrect beliefs about what it targets, the name should be changed or augmented to disambiguate it.
👍
> Tier 3 targets may have unusual requirements to build or use, but must not create legal issues or impose onerous legal terms for the Rust project or for Rust developers or users.
There are no known legal issues or license incompatibilities.
> Neither this policy nor any decisions made regarding targets shall create any binding agreement or estoppel by any party. If any member of an approving Rust team serves as one of the maintainers of a target, or has any legal or employment requirement (explicit or implicit) that might affect their decisions regarding a target, they must recuse themselves from any approval decisions regarding the target's tier status, though they may otherwise participate in discussions.
👍
> Tier 3 targets should attempt to implement as much of the standard libraries as possible and appropriate (core for most targets, alloc for targets that can support dynamic memory allocation, std for targets with an operating system or equivalent layer of system-provided functionality), but may leave some code unimplemented (either unavailable or stubbed out as appropriate), whether because the target makes it impossible to implement or challenging to implement. The authors of pull requests are not obligated to avoid calling any portions of the standard library on the basis of a tier 3 target not implementing those portions.
This PR only adds the targets for the platform. `std` support will be added once platform support is added to the libc crate, which depends on the language targets being added to rustc.
> The target must provide documentation for the Rust community explaining how to build for the target, using cross-compilation if possible. If the target supports running binaries, or running tests (even if they do not pass), the documentation must explain how to run such binaries or tests for the target, using emulation if possible or dedicated hardware if necessary.
👍
> Tier 3 targets must not impose burden on the authors of pull requests, or other developers in the community, to maintain the target. In particular, do not post comments (automated or manual) on a PR that derail or suggest a block on the PR based on a tier 3 target. Do not send automated messages or notifications (via any medium, including via ``@)`` to a PR author or others involved with a PR regarding a tier 3 target, unless they have opted into such messages.
👍
> Patches adding or updating tier 3 targets must not break any existing tier 2 or tier 1 target, and must not knowingly break another tier 3 target without approval of either the compiler team or the maintainers of the other tier 3 target.
👍
> Tier 3 targets must be able to produce assembly using at least one of rustc's supported backends from any host target. (Having support in a fork of the backend is not sufficient, it must be upstream.)
👍
rustc: Simplify getting sysroot library directory
It was very non-obvious that `sess.target_tlib_path`, `make_target_lib_path(...)`, and `sess.target_filesearch(...).search_paths()` result in the same sysroot library directory paths.
They are however, indeed the same, because `sess.target_tlib_path` is initialized to `make_target_lib_path(...)` on `Session` creation, and they are used interchangeably.
There are still some redundant calls to `make_target_lib_path` and other inconsistent ways to obtain sysroot directories, but fixing that requires some behavior changes, while this PR is a pure refactoring.
Some places in the compiler even disagree on the number of sysroots - 1 (explicit `--sysroot` *or* default sysroot), 2 (explicit `--sysroot` *and* default sysroot), or an unclear number of `sysroot_candidates` every of which is considered.
The logic currently using `sess.target_tlib_path` or equivalents assumes one sysroot.
miri weak memory emulation: put previous value into initial store buffer
Fixes https://github.com/rust-lang/miri/issues/2164 by doing a read before each atomic write so that we can initialize the store buffer. The read suppresses memory access hooks and UB exceptions, to avoid otherwise influencing the program behavior. If the read fails, we store that as `None` in the store buffer, so that when an atomic read races with the first atomic write to some memory and previously the memory was uninitialized, we can report UB due to reading uninit memory.
``@cbeuw`` this changes a bit the way we initialize the store buffers. Not sure if you still remember all this code, but if you could have a look to make sure this still makes sense, that would be great. :)
r? ``@saethlin``
simd_shuffle intrinsic: allow argument to be passed as vector
See https://github.com/rust-lang/rust/issues/128738 for context.
I'd like to get rid of [this hack](6c0b89dfac/compiler/rustc_codegen_ssa/src/mir/block.rs (L922-L935)). https://github.com/rust-lang/rust/pull/128537 almost lets us do that since constant SIMD vectors will then be passed as immediate arguments. However, simd_shuffle for some reason actually takes an *array* as argument, not a vector, so the hack is still required to ensure that the array becomes an immediate (which then later stages of codegen convert into a vector, as that's what LLVM needs).
This PR prepares simd_shuffle to also support a vector as the `idx` argument. Once this lands, stdarch can hopefully be updated to pass `idx` as a vector, and then support for arrays can be removed, which finally lets us get rid of that hack.