Make closures carry their own ClosureKind
Right now, we use the "`movability`" field of `hir::Closure` to distinguish a closure and a coroutine. This is paired together with the `CoroutineKind`, which is located not in the `hir::Closure`, but the `hir::Body`. This is strange and redundant.
This PR introduces `ClosureKind` with two variants -- `Closure` and `Coroutine`, which is put into `hir::Closure`. The `CoroutineKind` is thus removed from `hir::Body`, and `Option<Movability>` no longer needs to be a stand-in for "is this a closure or a coroutine".
r? eholk
Remove `DiagCtxt` API duplication
`DiagCtxt` defines the internal API for creating and emitting diagnostics: methods like `struct_err`, `struct_span_warn`, `note`, `create_fatal`, `emit_bug`. There are over 50 methods.
Some of these methods are then duplicated across several other types: `Session`, `ParseSess`, `Parser`, `ExtCtxt`, and `MirBorrowckCtxt`. `Session` duplicates the most, though half the ones it does are unused. Each duplicated method just calls forward to the corresponding method in `DiagCtxt`. So this duplication exists to (in the best case) shorten chains like `ecx.tcx.sess.parse_sess.dcx.emit_err()` to `ecx.emit_err()`.
This API duplication is ugly and has been bugging me for a while. And it's inconsistent: there's no real logic about which methods are duplicated, and the use of `#[rustc_lint_diagnostic]` and `#[track_caller]` attributes vary across the duplicates.
This PR removes the duplicated API methods and makes all diagnostic creation and emission go through `DiagCtxt`. It also adds `dcx` getter methods to several types to shorten chains. This approach scales *much* better than API duplication; indeed, the PR adds `dcx()` to numerous types that didn't have API duplication: `TyCtxt`, `LoweringCtxt`, `ConstCx`, `FnCtxt`, `TypeErrCtxt`, `InferCtxt`, `CrateLoader`, `CheckAttrVisitor`, and `Resolver`. These result in a lot of changes from `foo.tcx.sess.emit_err()` to `foo.dcx().emit_err()`. (You could do this with more types, but it gets into diminishing returns territory for types that don't emit many diagnostics.)
After all these changes, some call sites are more verbose, some are less verbose, and many are the same. The total number of lines is reduced, mostly because of the removed API duplication. And consistency is increased, because calls to `emit_err` and friends are always preceded with `.dcx()` or `.dcx`.
r? `@compiler-errors`
Give temporaries in if let guards correct scopes
Temporaries in if-let guards have scopes that escape the match arm, this causes problems because the drops might be for temporaries that are not storage live. This PR changes the scope of temporaries in if-let guards to be limited to the arm:
```rust
_ if let Some(s) = std::convert::identity(&Some(String::new())) => {}
// Temporary for Some(String::new()) is dropped here ^
```
We also now deduplicate temporaries between copies of the guard created for or-patterns:
```rust
// Only create a single Some(String::new()) temporary variable
_ | _ if let Some(s) = std::convert::identity(&Some(String::new())) => {}
```
This changes MIR building to pass around `ExprId`s rather than `Expr`s so that we have a way to index different expressions.
cc #51114Closes#116079
`IntoDiagnostic` defaults to `ErrorGuaranteed`, because errors are the
most common diagnostic level. It makes sense to do likewise for the
closely-related (and much more widely used) `DiagnosticBuilder` type,
letting us write `DiagnosticBuilder<'a, ErrorGuaranteed>` as just
`DiagnosticBuilder<'a>`. This cuts over 200 lines of code due to many
multi-line things becoming single line things.
- Make temporaries in if-let guards be the same variable in MIR when
the guard is duplicated due to or-patterns.
- Change the "destruction scope" for match arms to be the arm scope rather
than the arm body scope.
- Add tests.
Don't pass lint back out of lint decorator
Change the decorator function in the signature of the `emit_lint`/`span_lint`/etc family of methods from `impl for<'a, 'b> FnOnce(&'b mut DiagnosticBuilder<'a, ()>) -> &'b mut DiagnosticBuilder<'a, ()>` to `impl for<'a, 'b> FnOnce(&'b mut DiagnosticBuilder<'a, ()>)`. I consider it easier to read this way, especially when there's control flow involved.
r? nnethercote though feel free to reassign
Renamings:
- find -> opt_hir_node
- get -> hir_node
- find_by_def_id -> opt_hir_node_by_def_id
- get_by_def_id -> hir_node_by_def_id
Fix rebase changes using removed methods
Use `tcx.hir_node_by_def_id()` whenever possible in compiler
Fix clippy errors
Fix compiler
Apply suggestions from code review
Co-authored-by: Vadim Petrochenkov <vadim.petrochenkov@gmail.com>
Add FIXME for `tcx.hir()` returned type about its removal
Simplify with with `tcx.hir_node_by_def_id`
detects redundant imports that can be eliminated.
for #117772 :
In order to facilitate review and modification, split the checking code and
removing redundant imports code into two PR.
Most notably, this commit changes the `pub use crate::*;` in that file
to `use crate::*;`. This requires a lot of `use` items in other crates
to be adjusted, because everything defined within `rustc_span::*` was
also available via `rustc_span::source_map::*`, which is bizarre.
The commit also removes `SourceMap::span_to_relative_line_string`, which
is unused.
Avoid a `track_errors` by bubbling up most errors from `check_well_formed`
I believe `track_errors` is mostly papering over issues that a sufficiently convoluted query graph can hit. I made this change, while the actual change I want to do is to stop bailing out early on errors, and instead use this new `ErrorGuaranteed` to invoke `check_well_formed` for individual items before doing all the `typeck` logic on them.
This works towards resolving https://github.com/rust-lang/rust/issues/97477 and various other ICEs, as well as allowing us to use parallel rustc more (which is currently rather limited/bottlenecked due to the very sequential nature in which we do `rustc_hir_analysis::check_crate`)
cc `@SparrowLii` `@Zoxc` for the new `try_par_for_each_in` function
Point at assoc fn definition on type param divergence
When the number of type parameters in the associated function of an impl and its trait differ, we now *always* point at the trait one, even if it comes from a foreign crate. When it is local, we point at the specific params, when it is foreign, we point at the whole associated item.
Fix#69944.
When the number of type parameters in the associated function of an impl
and its trait differ, we now *always* point at the trait one, even if it
comes from a foreign crate. When it is local, we point at the specific
params, when it is foreign, we point at the whole associated item.
Fix#69944.