Querify MonoItem collection
Factored out of https://github.com/rust-lang/rust/pull/131650. These changes are required for post-mono MIR opts, because the previous implementation would load the MIR for every Instance that we traverse (as well as invoke queries on it). The cost of that would grow massively with post-mono MIR opts because we'll need to load new MIR for every Instance, instead of re-using the `optimized_mir` for every Instance with the same DefId.
So the approach here is to add two new queries, `items_of_instance` and `size_estimate`, which contain the specific information about an Instance's MIR that MirUsedCollector and CGU partitioning need, respectively. Caching these significantly increases the size of the query cache, but that's justified by our improved incrementality (I'm sure walking all the MIR for a huge crate scales quite poorly).
This also changes `MonoItems` into a type that will retain the traversal order (otherwise we perturb a bunch of diagnostics), and will also eliminate duplicate findings. Eliminating duplicates removes about a quarter of the query cache size growth.
The perf improvements in this PR are inflated because rustc-perf uses `-Zincremental-verify-ich`, which makes loading MIR a lot slower because MIR contains a lot of Spans and computing the stable hash of a Span is slow. And the primary goal of this PR is to load less MIR. Some squinting at `collector profile_local perf-record +stage1` runs suggests the magnitude of the improvements in this PR would be decreased by between a third and a half if that flag weren't being used. Though this effect may apply to the regressions too since most are incr-full and this change also causes such builds to encode more Spans.
Emit warning when calling/declaring functions with unavailable vectors.
On some architectures, vector types may have a different ABI depending on whether the relevant target features are enabled. (The ABI when the feature is disabled is often not specified, but LLVM implements some de-facto ABI.)
As discussed in rust-lang/lang-team#235, this turns out to very easily lead to unsound code.
This commit makes it a post-monomorphization future-incompat warning to declare or call functions using those vector types in a context in which the corresponding target features are disabled, if using an ABI for which the difference is relevant. This ensures that these functions are always called with a consistent ABI.
See the [nomination comment](https://github.com/rust-lang/rust/pull/127731#issuecomment-2288558187) for more discussion.
Part of #116558
r? RalfJung
On some architectures, vector types may have a different ABI depending
on whether the relevant target features are enabled. (The ABI when the
feature is disabled is often not specified, but LLVM implements some
de-facto ABI.)
As discussed in rust-lang/lang-team#235, this turns out to very easily
lead to unsound code.
This commit makes it a post-monomorphization future-incompat warning to
declare or call functions using those vector types in a context in which
the corresponding target features are disabled, if using an ABI for
which the difference is relevant. This ensures that these functions are
always called with a consistent ABI.
See the [nomination comment](https://github.com/rust-lang/rust/pull/127731#issuecomment-2288558187)
for more discussion.
Part of #116558
- removed extra bits from predicates queries that are no longer needed in the new system
- removed the need for `non_erasable_generics` to take in tcx and DefId, removed unused arguments in callers
Emit future-incompatibility lint when calling/declaring functions with vectors that require missing target feature
On some architectures, vector types may have a different ABI depending on whether the relevant target features are enabled. (The ABI when the feature is disabled is often not specified, but LLVM implements some de-facto ABI.)
As discussed in https://github.com/rust-lang/lang-team/issues/235, this turns out to very easily lead to unsound code.
This commit makes it a post-monomorphization error to declare or call functions using those vector types in a context in which the corresponding target features are disabled, if using an ABI for which the difference is relevant. This ensures that these functions are always called with a consistent ABI.
See the [nomination comment](https://github.com/rust-lang/rust/pull/127731#issuecomment-2288558187) for more discussion.
r? RalfJung
Part of https://github.com/rust-lang/rust/issues/116558
On some architectures, vector types may have a different ABI when
relevant target features are enabled.
As discussed in https://github.com/rust-lang/lang-team/issues/235, this
turns out to very easily lead to unsound code.
This commit makes it an error to declare or call functions using those
vector types in a context in which the corresponding target features are
disabled, if using an ABI for which the difference is relevant.
Add `File` constructors that return files wrapped with a buffer
In addition to the light convenience, these are intended to raise visibility that buffering is something you should consider when opening a file, since unbuffered I/O is a common performance footgun to Rust newcomers.
ACP: https://github.com/rust-lang/libs-team/issues/446
Tracking Issue: #130804
Separate collection of crate-local inherent impls from error tracking
#119895 changed the return type of the `crate_inherent_impls` query from `CrateInherentImpls` to `Result<CrateInherentImpls, ErrorGuaranteed>` to avoid needing to use the non-parallel-friendly `track_errors()` to track if an error was reporting from within the query... This was mostly fine until #121113, which stopped halting compilation when we hit an `Err(ErrorGuaranteed)` in the `crate_inherent_impls` query.
Thus we proceed onwards to typeck, and since a return type of `Result<CrateInherentImpls, ErrorGuaranteed>` means that the query can *either* return one of "the list inherent impls" or "error has been reported", later on when we want to assemble method or associated item candidates for inherent impls, we were just treating any `Err(ErrorGuaranteed)` return value as if Rust had no inherent impls defined anywhere at all! This leads to basically every inherent method call failing with an error, lol, which was reported in #127798.
This PR changes the `crate_inherent_impls` query to return `(CrateInherentImpls, Result<(), ErrorGuaranteed>)`, i.e. returning the inherent impls collected *and* whether an error was reported in the query itself. It firewalls the latter part of that query into a new `crate_inherent_impls_validity_check` just for the `ensure()` call.
This fixes#127798.
Simplify some nested `if` statements
Applies some but not all instances of `clippy::collapsible_if`. Some ended up looking worse afterwards, though, so I left those out. Also applies instances of `clippy::collapsible_else_if`
Review with whitespace disabled please.
Use `append` instead of `extend(drain(..))`
The first commit adds `IndexVec::append` that forwards to `Vec::append`, and uses it in a couple places.
The second commit updates `indexmap` for its new `IndexMap::append`, and also uses that in a couple places.
These changes are similar to what [`clippy::extend_with_drain`](https://rust-lang.github.io/rust-clippy/master/index.html#/extend_with_drain) would suggest, just for other collection types.
Support tail calls in mir via `TerminatorKind::TailCall`
This is one of the interesting bits in tail call implementation — MIR support.
This adds a new `TerminatorKind` which represents a tail call:
```rust
TailCall {
func: Operand<'tcx>,
args: Vec<Operand<'tcx>>,
fn_span: Span,
},
```
*Structurally* this is very similar to a normal `Call` but is missing a few fields:
- `destination` — tail calls don't write to destination, instead they pass caller's destination to the callee (such that eventual `return` will write to the caller of the function that used tail call)
- `target` — similarly to `destination` tail calls pass the caller's return address to the callee, so there is nothing to do
- `unwind` — I _think_ this is applicable too, although it's a bit confusing
- `call_source` — `become` forbids operators and is not created as a lowering of something else; tail calls always come from HIR (at least for now)
It might be helpful to read the interpreter implementation to understand what `TailCall` means exactly, although I've tried documenting it too.
-----
There are a few `FIXME`-questions still left, ideally we'd be able to answer them during review ':)
-----
r? `@oli-obk`
cc `@scottmcm` `@DrMeepster` `@JakobDegen`