`rustc_span::symbol` defines some things that are re-exported from
`rustc_span`, such as `Symbol` and `sym`. But it doesn't re-export some
closely related things such as `Ident` and `kw`. So you can do `use
rustc_span::{Symbol, sym}` but you have to do `use
rustc_span::symbol::{Ident, kw}`, which is inconsistent for no good
reason.
This commit re-exports `Ident`, `kw`, and `MacroRulesNormalizedIdent`,
and changes many `rustc_span::symbol::` qualifiers in `compiler/` to
`rustc_span::`. This is a 200+ net line of code reduction, mostly
because many files with two `use rustc_span` items can be reduced to
one.
Hir attributes
This PR needs some explanation, it's somewhat large.
- This is step one as described in https://github.com/rust-lang/compiler-team/issues/796. I've added a new `hir::Attribute` which is a lowered version of `ast::Attribute`. Right now, this has few concrete effects, however every place that after this PR parses a `hir::Attribute` should later get a pre-parsed attribute as described in https://github.com/rust-lang/compiler-team/issues/796 and transitively https://github.com/rust-lang/rust/issues/131229.
- an extension trait `AttributeExt` is added, which is implemented for both `ast::Attribute` and `hir::Atribute`. This makes `hir::Attributes` mostly compatible with code that used to parse `ast::Attribute`. All its methods are also added as inherent methods to avoid having to import the trait everywhere in the compiler.
- Incremental can not not hash `ast::Attribute` at all.
In #119606 I added them and used a `_mv` suffix, but that wasn't great.
A `with_` prefix has three different existing uses.
- Constructors, e.g. `Vec::with_capacity`.
- Wrappers that provide an environment to execute some code, e.g.
`with_session_globals`.
- Consuming chaining methods, e.g. `Span::with_{lo,hi,ctxt}`.
The third case is exactly what we want, so this commit changes
`DiagnosticBuilder::foo_mv` to `DiagnosticBuilder::with_foo`.
Thanks to @compiler-errors for the suggestion.
This works for most of its call sites. This is nice, because `emit` very
much makes sense as a consuming operation -- indeed,
`DiagnosticBuilderState` exists to ensure no diagnostic is emitted
twice, but it uses runtime checks.
For the small number of call sites where a consuming emit doesn't work,
the commit adds `DiagnosticBuilder::emit_without_consuming`. (This will
be removed in subsequent commits.)
Likewise, `emit_unless` becomes consuming. And `delay_as_bug` becomes
consuming, while `delay_as_bug_without_consuming` is added (which will
also be removed in subsequent commits.)
All this requires significant changes to `DiagnosticBuilder`'s chaining
methods. Currently `DiagnosticBuilder` method chaining uses a
non-consuming `&mut self -> &mut Self` style, which allows chaining to
be used when the chain ends in `emit()`, like so:
```
struct_err(msg).span(span).emit();
```
But it doesn't work when producing a `DiagnosticBuilder` value,
requiring this:
```
let mut err = self.struct_err(msg);
err.span(span);
err
```
This style of chaining won't work with consuming `emit` though. For
that, we need to use to a `self -> Self` style. That also would allow
`DiagnosticBuilder` production to be chained, e.g.:
```
self.struct_err(msg).span(span)
```
However, removing the `&mut self -> &mut Self` style would require that
individual modifications of a `DiagnosticBuilder` go from this:
```
err.span(span);
```
to this:
```
err = err.span(span);
```
There are *many* such places. I have a high tolerance for tedious
refactorings, but even I gave up after a long time trying to convert
them all.
Instead, this commit has it both ways: the existing `&mut self -> Self`
chaining methods are kept, and new `self -> Self` chaining methods are
added, all of which have a `_mv` suffix (short for "move"). Changes to
the existing `forward!` macro lets this happen with very little
additional boilerplate code. I chose to add the suffix to the new
chaining methods rather than the existing ones, because the number of
changes required is much smaller that way.
This doubled chainging is a bit clumsy, but I think it is worthwhile
because it allows a *lot* of good things to subsequently happen. In this
commit, there are many `mut` qualifiers removed in places where
diagnostics are emitted without being modified. In subsequent commits:
- chaining can be used more, making the code more concise;
- more use of chaining also permits the removal of redundant diagnostic
APIs like `struct_err_with_code`, which can be replaced easily with
`struct_err` + `code_mv`;
- `emit_without_diagnostic` can be removed, which simplifies a lot of
machinery, removing the need for `DiagnosticBuilderState`.
Stabilize Ratified RISC-V Target Features
Stabilization PR for the ratified RISC-V target features. This stabilizes some of the target features tracked by #44839. This is also a part of #114544 and eventually needed for the RISC-V part of rust-lang/rfcs#3268.
There is a similar PR for the the stdarch crate which can be found at rust-lang/stdarch#1476.
This was briefly discussed on Zulip
(https://rust-lang.zulipchat.com/#narrow/stream/250483-t-compiler.2Frisc-v/topic/Stabilization.20of.20RISC-V.20Target.20Features/near/394793704).
Specifically, this PR stabilizes the:
* Atomic Instructions (A) on v2.0
* Compressed Instructions (C) on v2.0
* ~Double-Precision Floating-Point (D) on v2.2~
* ~Embedded Base (E) (Given as `RV32E` / `RV64E`) on v2.0~
* ~Single-Precision Floating-Point (F) on v2.2~
* Integer Multiplication and Division (M) on v2.0
* ~Vector Operations (V) on v1.0~
* Bit Manipulations (B) on v1.0 listed as `zba`, `zbc`, `zbs`
* Scalar Cryptography (Zk) v1.0.1 listed as `zk`, `zkn`, `zknd`, `zkne`, `zknh`, `zkr`, `zks`, `zksed`, `zksh`, `zkt`, `zbkb`, `zbkc` `zkbx`
* ~Double-Precision Floating-Point in Integer Register (Zdinx) on v1.0~
* ~Half-Precision Floating-Point (Zfh) on v1.0~
* ~Minimal Half-Precision Floating-Point (Zfhmin) on v1.0~
* ~Single-Precision Floating-Point in Integer Register (Zfinx) on v1.0~
* ~Half-Precision Floating-Point in Integer Register (Zhinx) on v1.0~
* ~Minimal Half-Precision Floating-Point in Integer Register (Zhinxmin) on v1.0~
r? `@Amanieu`
Support for native WASM exceptions
### Motivation
Currently, rustc does not support native WASM exceptions. It does support JavaScript based exceptions for the wasm32-emscripten-target, but this requires back&forth with javascript for many calls, which is very slow.
Native wasm support for exceptions is quite common: Clang+LLVM implemented them years ago, and all major browsers support them by now. They enable zero-cost exceptions, at least with regard to runtime-performance-cost. They may increase startup-time and code size, though.
### Important: This PR does not change default behaviour
Exceptions usually add a lot of code in form of unwinding blocks, increasing the binary size. Most users probably do not want that, especially which regard to web development.
Therefore, wasm exceptions play a similar role as WASM-threads: rustc should support them, like clang does, but users who want to use it have to use some command-line magic like rustflags to opt in.
### What does this PR do?
As stated above, the default behaviour is not changed. It is already possible to opt-in into wasm exceptions using the command line. Unfortunately, the LLVM IR is invalid and the LLVM backend crashes.
```
rustc <sourcefile>
--target wasm32-unknown-unknown
-C panic=unwind
-C llvm-args=-wasm-enable-eh
-C target-feature=+exception-handling
```
As it turns out, LLVM is quite picky when it comes to IR for exception handling. If the IR does not look exactly like it should, some LLVM-assertions fail and the code generation crashes.
This PR adds the necessary modifications to the code generator to make it work. It also adds `exception-handling` as a wasm target feature.
### What this PR does not / what is missing
This PR is not a full fledges solution. It is the first step. A few parts are still missing; however, it is already useable (see next section).
Currently missing:
* The std library has to be adapted. Currently, only [no_std] crates work
* Usually, nested exceptions abort the program (i.e. a panic during the cleanup of another panic). This is currently not done yet.
- Currently, code inside cleanup handlers does not unwind
- To fix this requires a little more work: The code generator currently maintains a single terminate block per function for this. Unfortunately, WASM requires funclet based exception handling. Therefore, we need to create a terminate block per funclet. This is probably not a big problem, but I want to keep this PR simple.
### How to use the compiler given this PR?
This PR does not add any command line flags or features. It uses those which are already there. To compile with exceptions enabled, you need
* to set the panic strategy to unwind, i.e. `-C panic=unwind`
* to enable the exception-handling target feature, i.e. `-C target-feature=+exception-handling`
* to tell LLVM about the exception handling, i.e. `-C llvm-args=-wasm-enable-eh`
Since the standard library has not been adapted, you can only use it in [no_std] crates as of now. The intrinsic `core::intrinsics::r#try` works. To throw exceptions, you need the ```@llvm.wasm.throw``` intrinsic.
I created a sample application which works for me: https://github.com/mirkootter/rust-wasm-demos
This example can be run at https://webassembly.sh