Implement `do_not_recommend` in the new solver
Put the test into `diagnostic_namespace` test folder even though it's not in the diagnostic namespace, because it should be soon.
r? lcnr
cc `@weiznich`
Use a proof tree visitor to refine the `Obligation` for error reporting in new solver
With the magic of `ProofTreeVisitor`, we can close the gap that we have on `ObligationCause`s being not as descriptive in the new trait solver.
r? lcnr
Needs some work and obviously documentation.
Rewrite select (in the new solver) to use a `ProofTreeVisitor`
We can use a proof tree visitor rather than collecting and recomputing all the nested goals ourselves.
Based on #124415
Remove many `#[macro_use] extern crate foo` items
This requires the addition of more `use` items, which often make the code more verbose. But they also make the code easier to read, because `#[macro_use]` obscures where macros are defined.
r? `@fee1-dead`
`obligations_for_self_ty`: use `ProofTreeVisitor` for nested goals
As always, dealing with proof trees continues to be a hacked together mess. After this PR and #124380 the only remaining blocker for core is https://github.com/rust-lang/trait-system-refactor-initiative/issues/90. There is also a `ProofTreeVisitor` issue causing an ICE when compiling `alloc` which I will handle in a separate PR. This issue likely affects coherence diagnostics more generally.
The core idea is to extend the proof tree visitor to support visiting nested candidates without using a `probe`. We then simply recurse into nested candidates if they are the only potentially applicable candidate for a given goal and check whether the self type matches the expected one.
For that to work, we need to improve `CanonicalState` to also handle unconstrained inference variables created inside of the trait solver. This is done by extending the `var_values` of `CanoncalState` with each fresh inference variables. Furthermore, we also store the state of all inference variables at the end of each probe. When recursing into `InspectCandidates` we then unify the values of all these states.
r? `@compiler-errors`
uses a `ProofTreeVisitor` to look into nested
goals when looking at the pending obligations
during hir typeck. Used by closure signature
inference, coercion, and for async functions.
Add simple async drop glue generation
This is a prototype of the async drop glue generation for some simple types. Async drop glue is intended to behave very similar to the regular drop glue except for being asynchronous. Currently it does not execute synchronous drops but only calls user implementations of `AsyncDrop::async_drop` associative function and awaits the returned future. It is not complete as it only recurses into arrays, slices, tuples, and structs and does not have same sensible restrictions as the old `Drop` trait implementation like having the same bounds as the type definition, while code assumes their existence (requires a future work).
This current design uses a workaround as it does not create any custom async destructor state machine types for ADTs, but instead uses types defined in the std library called future combinators (deferred_async_drop, chain, ready_unit).
Also I recommend reading my [explainer](https://zetanumbers.github.io/book/async-drop-design.html).
This is a part of the [MCP: Low level components for async drop](https://github.com/rust-lang/compiler-team/issues/727) work.
Feature completeness:
- [x] `AsyncDrop` trait
- [ ] `async_drop_in_place_raw`/async drop glue generation support for
- [x] Trivially destructible types (integers, bools, floats, string slices, pointers, references, etc.)
- [x] Arrays and slices (array pointer is unsized into slice pointer)
- [x] ADTs (enums, structs, unions)
- [x] tuple-like types (tuples, closures)
- [ ] Dynamic types (`dyn Trait`, see explainer's [proposed design](https://github.com/zetanumbers/posts/blob/main/async-drop-design.md#async-drop-glue-for-dyn-trait))
- [ ] coroutines (https://github.com/rust-lang/rust/pull/123948)
- [x] Async drop glue includes sync drop glue code
- [x] Cleanup branch generation for `async_drop_in_place_raw`
- [ ] Union rejects non-trivially async destructible fields
- [ ] `AsyncDrop` implementation requires same bounds as type definition
- [ ] Skip trivially destructible fields (optimization)
- [ ] New [`TyKind::AdtAsyncDestructor`](https://github.com/zetanumbers/posts/blob/main/async-drop-design.md#adt-async-destructor-types) and get rid of combinators
- [ ] [Synchronously undroppable types](https://github.com/zetanumbers/posts/blob/main/async-drop-design.md#exclusively-async-drop)
- [ ] Automatic async drop at the end of the scope in async context
Don't rely on upvars being assigned just because coroutine-closure kind is assigned
Previously, code relied on the implicit assumption that if a coroutine-closure's kind variable was constrained, then its upvars were also constrained. This is because we assign all of them at once at the end up upvar analysis.
However, there's another way that a coroutine-closure's kind can be constrained: from a signature hint in closure signature deduction. After #123350, we use these hints, which means the implicit assumption above no longer holds.
This PR adds the necessary checks so that we don't ICE.
r? oli-obk
Pass list of defineable opaque types into canonical queries
This eliminates `DefiningAnchor::Bubble` for good and brings the old solver closer to the new one wrt cycles and nested obligations. At that point the difference between `DefiningAnchor::Bind([])` and `DefiningAnchor::Error` was academic. We only used the difference for some sanity checks, which actually had to be worked around in places, so I just removed `DefiningAnchor` entirely and just stored the list of opaques that may be defined.
fixes#108498
fixes https://github.com/rust-lang/rust/issues/116877
* [x] run crater
- https://github.com/rust-lang/rust/pull/122077#issuecomment-2013293931
do not ICE in `fn forced_ambiguity` if we get an error
see the comment. currently causing an ICE in typenum which we've been unable to minimize.
r? `@compiler-errors`
Cleanup: Rename `HAS_PROJECTIONS` to `HAS_ALIASES` etc.
The name of the bitflag `HAS_PROJECTIONS` and of its corresponding method `has_projections` is quite historical dating back to a time when projections were the only kind of alias type.
I think it's time to update it to clear up any potential confusion for newcomers and to reduce unnecessary friction during contributor onboarding.
r? types
change `NormalizesTo` to fully structurally normalize
notes in https://hackmd.io/wZ016dE4QKGIhrOnHLlThQ
need to also update the dev-guide once this PR lands. in short, the setup is now as follows:
`normalizes-to` internally implements one step normalization, applying that normalization to the `goal.predicate.term` causes the projected term to get recursively normalized. With this `normalizes-to` normalizes until the projected term is rigid, meaning that we normalize as many steps necessary, but at least 1.
To handle rigid aliases, we add another candidate only if the 1 to inf step normalization failed. With this `normalizes-to` is now full structural normalization. We can now change `AliasRelate` to simply emit `normalizes-to` goals for the rhs and lhs.
This avoids the concerns from https://github.com/rust-lang/trait-system-refactor-initiative/issues/103 and generally feels cleaner